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Preface

“Grammar does not tell us how language must be constructed in order to
fulfil its purpose, in order to have such-and-such an effect on human beings.
It only describes and in no way explains the use of signs,”' wrote Ludwig
Wittgenstein in his Philosophical Investigations.

In this book, we only describe and no way explain the “use of signs” for
determining the transmission of information from the micro- to the mesco-
and the macro-scales highlighted as central to the behavior of complex sys-
tems [Kolmogorov, 1958, Kolmogorov, 1959, James et al., 2016].

In particular, we discuss

e how local and global properties of complex systems are related to each
other (i.e., geometry);

e how uncertainty in the environmental conditions and immediate transi-
tions are related to uncertainty of the infinitely long paths (or sequences
of transformations) in complex systems (i.e., predictability);

e which part of information is lost in transitions and which part is stored
and have repercussions in the future evolution of the complex system (i.e.,
selectivity).

In order to enhance readability of the text,
o] . . . . .
= | the important conclusions are displayed in large print to
make reading easier.

The concepts of the book have been developed following the lectures de-
livered by us during the spring semester 2017 in the Artificial Intelligence
Key Laboratory of Sichuan Province, School of Automation and Information

! Wittgenstein, Ludwig (1963). Philosophische Untersuchungen (Philosophical In-
vestigations), transl. G. E. M. Anscombe, Oxford, Basil Blackwell.
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Chapter 1
Perplexity of Complexity’

Systems composed of many components interacting with each other are con-
sidered complex since their behavior may not be expressed as a direct sum
of individual behaviors of their parts. More complex systems naturally in-
volve more parts and potentially integrate more diverse interactions between
their components compared to simpler ones. Envisioning complex systems is
an observer dependent practice [Johnson, 2014], since a knowledge of more
detailed characteristics can make a system appear more complex.

Phenomena which emerge from a collection of interacting objects are often
termed complex phenomena [Johnson, 2009]. The study of complex phenom-
ena is perplexing because of emergent properties of a complex system which
arise at a higher level of organization, above the level of its individual com-
ponents. In this chapter we informally introduce some of the basic concepts
of the modern approach to complex systems and explain why they are im-
portant.

1.1 A Compositional Containment Hierarchy of
Complex Systems and Processes

On the one hand, individual components of a complex system may be them-
selves complex, on the other hand the entire system embracing them may be
just an elementary constituent of even more complex systems. An ordering
of the parts that make up a complex system is called a compositional con-
tainment hierarchy. Each level of the compositional containment hierarchy is
characterized by the certain emergent properties that may not be seen at the
lower levels of hierarchy.

! In his highly influential paper “From Complexzity to Perplexity”, J. Horgan [Horgan,
1995] addressed the question whether science can achieve a unified theory of complex
systems.
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Atoms, the most fundamental and stable units of matter, are bonded into
molecules. Aggregates of very large molecules formed by polymerization may
be composed into organelles, the simplest level of organization of living things.

Different organelles may further be organized into cells. Related cells al-
though not identical, but working together to accomplish specific functions
are collectively referred to as a tissue. Tissues varying in their compositions
are then joined in a higher level structural unit serving as a common function,
an organ. .

Groups of organs working together to perform one or more functions form
organ systems. Contiguous groups of organ systems, being capable of some
degree of response to stimuli, reproduction, growth, development, and home-
ostasis inside a defined environment, form organisms.

Collections of organisms of a species, sharing a particular characteristic
and having the capability of interbreeding, are populations. Groups of pop-
ulations, sharing a common environment, form ecological communities that
form ecosystems functioning as a unit with their environments. The global
sum of all ecosystems, largely self-regulating. forms the biosphere.

Although we stop climbing this hierarchy there, the absence of evidence
is not the evidence of absence of higher levels in that. It is also obvious that
the hierarchy of organization of living things is by no means a unique logical
path linking the events and things in this world at the micro-, meso- and
macroscopic levels.

|ﬂ An ordering of the parts that make up a complex system
is a compositional containment hierarchy. each level of
which is characterized by the certain emergent properties
that are not seen at the lower levels.

On the one hand, complex systems can be fragile, since strong coupling
between levels in the hierarchy can lead to cascading failures once a critical
breakdown occurs in some of the system’s levels causing catastrophic conse-
quences on the functioning of the entire system .[Buldyrev et al., 2010]. On
the other hand, a multi-level complex system forming a complex network of
many interacting components can be extremely resilient, as being able to
adapt to the rapidly changing environments [Gao et al., 2016].

1.2 Top-Down and Bottom-Up Processes Associated to
Complex Systems and Processes

A hierarchical organization of complex systems suggests the existence of two
opposite processes linking all levels in the compositional containment hierar-
chy by bi-directional causation [Lane, 2006].
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= '| The compositional containment hierarchy of complex sys-
tems is characterized by bi-directional causation associ-
ated to the processes of speciation and adaptation.

1.2.1 The Top-Down Process of Adaptation
(Downward Causation)

Definition 1. The downward causation is a causal relationship from higher
levels of a complex system to its lower-level parts [Campbell, 1974].

The corresponding top-down process enforces certain constraints from a
higher level development on the behavior of lower level components of the
system, making them move in ways that may be unpredictable, even the
complete information about these components is given. Since the mecha-
nisms operating at the higher levels of organization of a complex system
generally fail to accomplish the tasks at the lower levels of organization di-
rectly, the top-down process of the downward causation usually takes effect
indirectly, through the environment [Galaaen, 2006]. Therefore, a complex
system is profoundly influenced by the environment, facing a succession of
environmental challenges and actively adapting behavior to get along in the
environment with greatest success.

Remark 1. Since Herbert Spencer had first used the phrase “survival of the
fittest” [Spencer, 1864], we used to think that evolution is about the ability
of species to adapt to the changing environment. The process of adaptation
whereby a living organism is able to “leave the most copies of itself in succes-
sive generations” [Spencer, 1864] plays the central role in our contemporary
understanding of the key mechanisms of natural selection favoring the species
“better designed for an immediate, local environment” (as was clarified by
Darwin himself in the fifth edition of his famous work On the Origin of Species
published in 1869) [Freeman, 1977].

1.2.2 The Bottom-Up Process of Speciation (Upward
Causation) ‘

Definition 2. The opposite (to adaptation) bottom-up process related to the
upward causation involves interactions between the lower level components
that causes emergent properties arising at the level of the entire system, which
are not seen at the level of its basic constituents.

Emergence is particularly common when things are assembled to form
new wholes [Johnson, 2014]. Emergent phenomena can occur in hierarchi-
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cal systems that are far from the thermodynamic equilibrium due to a self-
organization process between their parts [Prigogine et al., 1977]. The develop-
ment path of a self-organizing complex system encounters bifurcation points,
where the system is forced to take one of several possible ways.

The complex systems are subject to innovation, demonstrating sensitive
dependence on initial conditions when a small change in the initial state of
a system results in the system diverging considerably. The initially identi-
cal, but reproductively isolated biological populations can evolve to become
distinct species in the process of speciation taking place over the course of
evolution [Sulloway, 1982].

Remark 2. Speciation triggers the mechanism driving biodiversity and pop-
ulating the levels of the pyramid shown in Fig. 1.1 with new traits, species,
and ecosystems arising due to divergent natural selection among different
habitats. Once identical populations become subjected to dissimilar selective
pressures and/ or undergo genetic drift independently, the fixation of incom-
patible mutations might make them no longer capable of exchanging genes
provided occasionally they come back into contact [Baker, 2005].

upward causation: downward causation:

adaptation

/ \

Fig. 1.1 A hierarchical organization of complex systems suggests the existence of two
oppositely directed processes linking all levels in the hierarchy by the bi-directional
causation




