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Foreword

It is the goal of the series Monographs in Number Theory to publish research
monographs and textbooks that provide clear expositions of various topics in
number theory.

We are grateful to Professors Bateman and Diamond for agreeing to
include their analytic number theory textbook as the first volume of the series.

We hope to continue to make available advanced monographs for re-
searchers, as well as monographs and textbooks accessible to a broader
audience, including undergraduate students, graduate students, and non-

experts.

Bruce C. Berndt
Heng Huat Chan
Series Editors



Preface

Number theory holds a distinguished position in mathematics for its many
results which are at once profound and yet easy to state. It is a beautiful
subject, and we hope this book will invite students to its study.

Our theme is the use of analysis to treat multiplicative problems in
number theory. We study several of the principal methods and results in
this area, particularly those involving reasonably stable arithmetical enti-
ties. Typical examples include counts of integers having regularly occurring
properties or summatory functions of arithmetic functions.

It seems paradoxical that analysis should be useful in number theory.
The integers, the central objects of study in number theory, are the pro-
totype of discreteness, while mathematical analysis, on the other hand, is
concerned with continuous phenomena. Analysis is applied in two ways
in this book: through direct real variable estimations, which we call “ele-
mentary” methods; and by using transforms, which put the apparatus of
complex function theory at our disposal. Analysis serves both to establish
results and to yield better understanding of the structure of problems.

This book is based on lecture notes we have éiven to generations of
students in introductory graduate level courses on analytic number theory
at the University of Illinois. We enjoyed teaching the material, and we hope
that some of this enthusiasm comes through in our text.

A feature of our presentation is use of Riemann-Stieltjes integrals to
unify and motivate arguments involving sums and integrals. We had pre-
viously hesitated to publish our notes out of a concern that some of the
methodology might be unfamiliar to the intended audience. We are cau-
tiously optimistic that now our formulation will be generally accepted. In



iv Preface

an appendix, we have presented the integration theory and a few further
results that may be less well known; other background material is com-
monly taught in undergraduate courses in real analysis, complex analysis,
and algebra or number theory.

Problems appear in the text near relevant techniques for their solution.
They generally illustrate some point and give substance to theory; we en-
courage readers to consider them. The problems vary considerably in their
difficulty.

Along with other writers, we suffer from a lack of symbols. For example,
@ is used here for Euler’s function as well as for various other functions. We
generally identify each function in case of possible ambiguity. Also, usage
of symbols is not always consistent among authors and topics. For instance,
the number of distinct prime factors of an integer n is generally denoted by
w(n); in the chapters on sieves this symbol has another customary usage,
so v(n) serves to denote the number of distinct prime factors there. In
the Symbol Index, we provide thumbnail sketches of symbols as a quick
reminder to readers; these are not full definitions!

We are pleased to acknowledge the contributions of many people to this
book. Most of our subject matter comes from the lectures and writings
of distinguished number theorists (K. Chandrasekharan, H. Halberstam,
A. E. Ingham, E. Landau, H. Rademacher, C. L. Siegel, and E. C. Titch-
marsh, to name a few). Many students and colleagues over the years have
provided stimulation, suggestions, and corrections to our original notes. We
received help on parts of the manuscript from S. Ullom and from the ref-
eree for W.S.P. We are very appreciative of the assistance of F. Bateman,
H. Halberstam, and J. Steinig for their many mathematical, grammatical,
and typographic suggestions; and of A. J. Hildebrand for mathematical and
BTEX advice. We thank H. Britt for typing the manuscript.

Finally, we request readers to advise us of errors or obscurities that they
find.

Urbana, Illinois
June, 2004

For this reprint we have made some minor corrections and updates
and also added a few index items. Corrections and comments are
maintained at the URL www. math. uiuc. edu/~diamond/ptbhgd/
corrigenda. pdf.

October, 2008
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Chapter 1

Introduction

1.1 Three problems

The rational integers play an important role in many parts of analysis,
e.g. as periods of functions such as sin 27z. In the other direction, one might
try to apply analysis to establish properties of integers. Analytic number
theory can be described as the study of problems concerning integers by use
of methods from analysis. These problems are often easy to state; however,
this is a poor guide for deciding how difficult they are to solve. Many
innocent sounding arithmetical problems have not yet been solved or have
been solved only by sophisticated methods.

We shall pose three problems here, each readily understood, and begin
work upon the last one. Our approach is necessarily ad hoc at this stage,
for we have available no general theory. The object here is to meet some
ideas which will occur again. Also, it is interesting to see what we can do
“from scratch.” After some more machinery has been developed, the first

two problems will be taken up and the third will be treated more efficiently
and systematically. ;

1.2 Asymmetric distribution of quadratic residues

Let p be a prime number. In the sequel the symbols p, ¢/,...,p1, P2, ... will
be reserved for primesand n, n',...,n;, ng, ... for positive integers. We say
that an integer n is a quadratic residue modulo p if p { n and n is congruent
to some square modulo p. For the first few primes p = 3 (mod 4) we list
the least positive residues modulo p and underline the quadratic residues:

1



2 Introduction

p= 3: 12

p= T7: 123456

p=11: 12345678910

p=19: 12345678910111213141516 17 18

p=23: 12345678910111213141516 17 18 19 20 21 22

Table 1.1 QUADRATIC RESIDUES

This table suggests that, generally, residues occur near the beginning of
each sequence and nonresidues occur near the end. We are led to conjecture

Theorem 1.1 Let p be a prime, p = 3 (mod 4). There are more quadratic
residues modulo p between 0 and p/2 than between p/2 and p.

This is a true theorem, and one obviously involving only integers. No
“elementary” proof is presently known. This is not surprising, since the or-
dering of the least positive residues 7 = k? (mod p) is connected in a subtle
way with the ordering of the integers 1 < k < p. All known proofs involve
such analytic tools as Fourier series or functions of a complex variable.

The above table suggests (and this is a familiar fact from elementary
number theory) that if p = 3 (mod 4) and n is a quadratic residue modulo
p, then p — n is not a quadratic residue and conversely. For primes p =
1 (mod 4), Theorem 1.1 cannot hold, for in that case (again by elementary
number theory) n is a quadratic residue precisely when p — n is.

1.3 The prime number theorem

Tt has been known since the time of Euclid that there are infinitely many
primes. (A proof of this fact is sketched in §1.5.) For z > 1, let n(z)
denote the number of primes in the interval [1,z]. Mathematicians have
long sought exact formulas for 7(z) or for the nth prime number p,,. Around
1800 Gauss and Legendre independently 6onjectured
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Theorem 1.2 (The prime number theorem).

m(z)
o0 z/logz

This theorem, which we shall call the P.N.T., is perhaps the most famous
result in analytic number theory. Its proof withstood the best efforts of 19th
century mathematicians until the end of the century, when proofs were
discovered independently by J. Hadamard and C. J. de la Vallée Poussin.

Although this theorem deals ultimately with integers, it is perhaps less
surprising that analysis plays a role here than in the first example. In-
deed, the very statement of the theorem contains the notions of limit and
logarithm, both of which belong to the domain of analysis.

1.4 Density of squarefree integers

A positive integer is said to be squarefree if it is not divisible by the square of
any prime. We denote the squarefree integers by Q. The first few elements
of Q are 1, 2, 3, 5, 6, 7, 10. We ask: What proportion of the positive
integers are squarefree? This question is rather vague, and it can be made
more precise as follows: We first define Q(z) to be the number of squarefree
integers not exceeding z. Next, we ask whether Q(z)/z tends to a limit as
z tends to oo, and finally what the value of this limit is, if it exists. In case
the limit exists, it is called the (asymptotic) density of Q.

One can make a numerical experiment on a list of the positive integers
by first deleting all multiples of 4, then all multiples of 9, then of 25, etc.
The first operation leaves about 3/4 of the integers. The second leaves
about 8/9 of those surviving the first operation, the third 24/25, etc. We
claim that divisibility by p? and divisibility by p'? (p # p') are, in some
sense, independent events (cf. the proof of Theorem 1.3, below, and §12.2).

The heuristic reasoning suggests that as z — oo,

), im (1 -2 37 (- p5?) = [[1 -7
P
and numerical -experiments reveal that

10 ’ 100 ¢ 1000 710,000



4 Introduction

We shall answer the question about the proportion of squarefree integers
by the following three theorems.

Theorem 1.3 The squarefree integers have the density

lim Q(z)/z = [J(1-»72).

Theorem 1.4 (Euler product formula).

CJIa-H =Y nt
P

n=1
o0
Theorem 1.5 { 3 n=2}"" =6/x% = 0.607927....
n=1

Corollary 1.6 = The density of squarefree integers is 6/m>.

Proof of Theorem 1.3. Let r be any nonnegative integer and for z > 1,
let Q(")(z) be the number of positive integers n < z such that n is not
divisible by the square of any of the first r primes. For example, Q) (z) =
[z] and QV)(z) = [z] — [z/4]. Here [u] denotes the greatest integer not
exceeding u. Clearly,

Q) 2 QW (z) 2 Q¥ () 2 ... > Q(a).
We shall first prove that if y is a multiple of 2232 ... p2, then
QM) =y(1 -27)(1~37%).. (1 -p]?).

An integer n is not divisible by the square of any of the first r primes
precisely when n satisfies the simultaneous congruences

n=a; (modpj), 1<i<r,

for an r-tuple of integers (ai,...,a,) with 0 < a; < p?. For any fixed
r-tuple (ay,...,a,) these simultaneous congruences have a unique solution
among any pip?-.-p? consecutive integers (Chinese remainder theorem).
There are (p? — 1)(p2 — 1) (p2 — 1) r-tuples satisfying 0 < a; < p? for
1 < i < r. Thus if a is a positive integer and y = ap? - - - p?, then

Q" (y) =a(p}—1)-+ (P2 -1) =y(1 - p;*)--- (1= p/?).

Incidentally, this reasoning makes precise the sense in which we regard
divisibility by p? and divisibility by p’? as independent events.
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For arbitrary positive z let y = [zp; - p; 2] p}- - p2. We have

0<QM(z) - QM (y) <z —y < pip}---p?
and also

0<(z—y) [JA-97%) <z—y < pip}-- ol

v=1

Thus

Q")(z) —wH(l—puz)—(w :u)H(l 7%+ Q") (z) - Q1(y)

v=1 v=1

.
=z [[Q-p%) +0p} 02,

v=1
where @ is a number of modulus at most 1. Hence

i 90 ¢ 1 206 _ gy, 206 _ L,

z-—)oo T | & z-)oo T z
v=1

This inequality is valid for each r and thus

-2
B T <Tla-»),
where the product is interpreted as the hrmt of the preceding one as r — o0,
We next estimate Q(z) from below. Let r be a positive integer. Then
Q") (z) — Q(z) counts the number of integers n € [1,z] which contain no
factor p? with p < p, and at least one factor p? for some p > p,. Thus

.
o0

Q@) - Q) <#{n<z:Iv>rptn}< Y #{n<z:pd|n}

v=r+1
= — < _’
u=¥+1 [pZ] v—;l-l / tﬂ r
whence
im 2@ 5 i Q7 )(w) 1 ?
zl% z z—-»oo —H(l— 2)_—



