Linuxift &R zh#2 F I &

SLENER)

Linux Device Drivers Development

SSSSSSSSSSSSSSSSSSSSSSS

Linux i& &R FF & (R EhR)

Linux Device Drivers Development

John Madieu &

AR HFEXFHEH

B H &4 B (CIP) ¥ E

Linux B45 32 I & - 930/ () 493 - Bt (John
Madiew)# . —HIA. —RI AT KA A, 2018.8

4 4 JR 3C : Linux Device Drivers Development

ISBN 978 —-7-5641-7753-9

I QL+ . Q%+ . OLinux ¥:1E R G—IKSh 2
F-RBFiEit—%x V. OTP316.89

o [R A 548 CIP %48 4% 5 (2018) 28 099725 5
E=.10- 2018 - 097 &

© 2017 by PACKT Publishing Ltd.

Reprint of the English Edition, jointly published by PACKT Publishing Ltd and Southeast University Press, 2018.
Authorized reprint of the original English edition, 2018 PACKT Publishing Ltd, the owner of all rights to

publish and sell the same.
All rights reserved including the rights of reproduction in whole or in part in any form.
3% SR #& &g PACKT Publishing Ltd # }& 2017,

EXHPRY R KT kAL B R 2018, LB IRA MM A B FA BB A E RO F
—— PACKT Publishing Ltd #)3% 7T ,

WA A AR B BHFT KB GETH S o 2T FEANEAH X EH,

Linux % & WS FF & GEEP AR

AR FT : AR R AL

o dk: EARUEEE2E HF4 210096
R A TEP

2 k. http//www.seupress.com
HLF ME {4 : press@ seupress.com

Ep Rl s N T SR = ENRIA BR 2 #]

FF 7. 787 ZK X980 Z K 16 J 4
Ef 5. 36.5

=2 ¥ 715 T

hi i

: 2018 4F 8 HEE 1 [l

Ep W 2018 4 8 A%E 1 IREPRI

+ 5 ISBN 978 - 7-5641-7753-9
E #r: 108.00 JG

AEBEARERRNE,FEESEHMER. BIFUEE) : 025-83791830

Author
John Madieu

Reviewer
Jérome Pouiller

Commissioning Editor
Gebin George

Acquisition Editor
Gebin George

Content Development Editor
Devika Battike

Technical Editor
Swathy Mohan

Copy Editors
Juliana Nair

Safis Editing

Project Coordinator
Judie Jose

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Kirk D'Penha

Credits

Production Coordinator

Arvindkumar Gupta

About the Author

John Madieu is an embedded Linux and kernel engineer living in France, in Paris. His main
activities consist of developing drivers and Board Support Packages (BSP) for companies in
domains such as automation, transport, healthcare, energy, and the military. John works at
EXPEMB, a French company that is a pioneer in electronical board design based on
computer-on-module, and in embedded Linux solutions. He is an open source and
embedded systems enthusiast, convinced that it is only by sharing knowledge that one
learns more.

He is passionate about boxing, which he practised for 6 years professionally, and continues
to transmit this passion through sessions of training that he provides voluntarily.

I would like to thank Devika Battike, Gebin George, and all the Packt team for their efforts
to release this book on time. They are the people without whom this book would probably
never have seen the light of day. It was a pleasure to work with them.

Finally, I would like to thank all the mentors I have had over the years, and who still
continue to accompany me. Mentors such as Cyprien Pacéme Nguefack for his
programming skills that I have learned over the years, Jérome Pouillier and Christophe
Nowicki for introducing me buildroot and leading me to kernel programming, Jean-
Christian Rerat and Jean-Philippe DU-Teil of EXPEMB for their coaching and
accompaniment in my professional career; to all those I could not mention, I wish to thank

them for having transmitted these connoises to me, which I have tried to disseminate
through this book.

About the Reviewer

Jéréme Pouiller is a true geek and fascinated by understanding how things do work.

He was an early adopter of Linux. He found in Linux a system with no limits, where
everything could be changed. Linux has provided an excellent platform to hack anything.

He graduated in machine learning at Ecole Pour I'Informatique et les Technologies
Avancées (EPITA). Beside his studies, he learned electronics by himself. He quickly turned
his attention to the piece of software at crossroad of all advanced systems: the operating
system. It is now one of his favorite subjects.

For 15 years now, Jérome Pouiller has designed (and often debugged) Linux firmware for a
variety of industries (multimedia, healthcare, nuclear, military).

In addition to his consulting activities, Jéréme Pouiler is professor of operating systems at
Institut National des Sciences Appliquées (INSA). He has written many course materials
about system programming, operating system design, realtime systems, and more.

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

~AnMapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
* On demand and accessible via a web browser

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1785280007.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

I would like to thank my girlfriend for her support and all the sleepless nights
accompanying the writing of this book, as well as Brigitte and Frangois, my dear parents,
for whom I have a thought and to whom I dedicate this book entirely.

- John Madieu

I would like to dedicate this book in the memory of my father, who left too.

- Jérome Pouiller

Table of Contents

Preface 1
Chapter 1: Introduction to Kernel Development 9
Environment setup 10
Getting the sources 10
Source organization 11

Kernel configuration 12
Build your kernel 13
Kernel habits 14
Coding style 14
Kernel structures allocation/initialization 15
Classes, objects, and OOP 16
Summary 17
Chapter 2: Device Driver Basis 19
User space and kernel space 20
The concept of modules 21
Module dependencies 21
depmod utility 21
Module loading and unloading 22
Manual loading 22
modprobe and insmod 22
letc/modules-load.d/<filename>.conf 22
Auto-loading 23

Module unload 23

Driver skeletons 24
Module entry and exit point 25
__initand __exit attributes 25
Module information 27
Licensing 29

Module author(s) 30

Module description 31

Errors and message printing 31
Error handling 31
Handling null pointer errors 34
Message printing — printk() 35
Module parameters 37

Building your first module 39

The module's makefile 39

In the kernel tree 41
Out of the tree 44
Building the module 44
Summary 45
Chapter 3: Kernel Facilities and Helper Functions 47
Understanding container_of macro 47
Linked lists 50
Creating and initializing the list 51
Dynamic method 51

Static method 52
Creating a list node 52
Adding a list node 53
Deleting a node from the list 54
Linked list traversal 54
Kernel sleeping mechanism 55
Wait queue 55
Delay and timer management 58
Standard timers 59
Jiffies and HZ 59

Timers API 59

Timer setup initialization 60

Standard timer example 61

High resolution timers (HRTSs) 62
HRT API 62

HRT setup initialization 62

Dynamic tick/tickless kernel 64
Delays and sleep in the kernel 64
Atomic context 64
Nonatomic context 65

Kernel locking mechanism 65
Mutex 66
Mutex API 66

Declare 66

Acquire and release 67

Spinlock 68
Spinlock versus mutexes 70

Work deferring mechanism 70
Softirqs and ksoftirqd 70
ksoftirqd 71
Tasklets 72
Declaring a tasklet 72

[ii]

Enabling and disabling a tasklet 73
Tasklet scheduling 73
Work queues 75

Kernel-global workqueue — the shared queue 75

Dedicated work queue 78

Programming syntax 78

Predefined (shared) workqueue and standard workqueue functions 81

Kernel threads 82
Kernel interruption mechanism 82
Registering an interrupt handler 82

Interrupt handler and lock 85
Concept of bottom halves 86

The problem — interrupt handler design limitations 86

The solution — bottom halves 86

Tasklets as bottom halves 87

Workqueue as bottom halves 88

Softirgs as bottom half 89

Threaded IRQs 89
Threaded bottom half 91
Invoking user-space applications from the kernel 92
Summary 93
Chapter 4: Character Device Drivers 95
The concept behind major and minor 96
Device number allocation and freeing 97
Introduction to device file operations 98
File representation in the kernel 99
Allocating and registering a character device 101
Writing file operations 102
Exchanging data between kernel space and user space 102

A single value copy 103
The open method 104

Per-device data 104
The release method 105
The write method 106

Steps to write 106
The read method 108

Steps to read 109
The liseek method 110

Steps to liseek 111
The poll method 112

Steps to poll 113
The ioctl method 116

[iii]

Generating ioctl numbers (command) 117

Steps for ioctl 118

Filling the file_operations structure 120
Summary 120
Chapter 5: Platform Device Drivers 121
Platform drivers 122
Platform devices 126
Resources and platform data 126
Device provisioning - the old and depreciated way 126
Resources 127

Platform data 129

Where to declare platform devices? 131

Device provisioning - the new and recommended way 131
Devices, drivers, and bus matching 132
How can platform devices and platform drivers match? 134
Kernel devices and drivers-matching function 135

OF style and ACPI match 136

ID table matching 136

Name matching - platform device name matching 140

Summary 140
Chapter 6: The Concept of Device Tree 141
Device tree mechanism 141
Naming convention 142
Aliases, labels, and phandle 143
DT compiler 144
Representing and addressing devices 145
SPI1 and I12C addressing 145
Platform device addressing 147
Handling resources 148
Concept of named resources 149
Accessing registers 150
Handling interrupts 151
The interrupt handler 151
Interrupt controller code 162

Extract application-specific data 153
Text string 153

Cells and unsigned 32-bit integers 154

Boolean 155

Extract and parse sub-nodes 155
Platform drivers and DT 156
OF match style 156
Dealing with non-device tree platforms 159

[iv]

Support multiple hardware with per device-specific data 160
Match style mixing 162
Platform resources and DT 164
Platform data versus DT 166
Summary 167
Chapter 7: 12C Client Drivers 169
The driver architecture 170
The i2c_driver structure 170
The probe() function 171
Per-device data 172
The remove() function 173
Driver initialization and registration 174
Driver and device provisioning 174
Accessing the client 175
Plain 12C communication 175
System Management Bus (SMBus) compatible functions 177
Instantiating 12C devices in the board configuration file (old and
depreciated way) 178
12C and the device tree 179
Defining and registering the 12C driver 180
Remark 181
Instantiating 12C devices in the device tree - the new way 182
Putting it all together 182
Summary 183
Chapter 8: SPI Device Drivers 185
The driver architecture 186
The device structure 186
spi_driver structure 189
The probe() function 189
Per-device data 190
The remove() function 191
Driver initialization and registration 191
Driver and devices provisioning 192
Instantiate SPI devices in board configuration file — old and depreciated way 193
SPI and device tree 194
Instantiate SPI devices in device tree - the new way 196
Define and register SPI driver 196
Accessing and talking to the client 197
Putting it all together 202
SPI user mode driver 202
With IOCTL 204

[vl]

Summary 207
Chapter 9: Regmap API — A Register Map Abstraction 209
Programming with the regmap API 210
regmap_config structure 211
regmap initialization 214

SPI initialization 214

12C initialization 215

Device access functions 216
regmap_update_bits function 217

Special regmap_multi_reg_write function 218

Other device access functions 219
regmap and cache 219
Putting it all together 221

A regmap example 221
Summary 224
Chapter 10: 11O Framework 225
IO data structures 227
iio_dev structure 227
iio_info structure 231

IO channels 232
Channel attribute naming conventions 234
Distinguishing channels 236

Putting it all together 238
Triggered buffer support 241
I1O trigger and sysfs (user space) 245
Sysfs trigger interface 245
add_trigger file 245
remove_trigger file 246

Tying a device with a trigger 246

The interrupt trigger interface 246

The hrtimer trigger interface 247

10O buffers 248

110 buffer sysfs interface 248

110 buffer setup 249

Putting it all together 251

IO data access 257
One-shot capture 258
Buffer data access 258
Capturing using the sysfs trigger 258
Capturing using the hrtimer trigger 260

IO tools 261

[vil

Summary 261
Chapter 11: Kernel Memory Management 263
System memory layout - kernel space and user space 265
Kernel addresses — concept of low and high memory 267
Low memory 268

High memory 268

User space addresses 269
Virtual Memory Area (VMA) 272
Address translation and MMU 274
Page look up and TLB 280
How does TLB work 280
Memory allocation mechanism 282
Page allocator 283
Page allocation API 283
Conversion functions 285

Slab allocator 286
The buddy algorithm 286

A journey into the slab allocator 289
kmalloc family allocation 291
vmalloc allocator 294
Process memory allocation under the hood 296
The copy-on-write (CoW) case 297

Work with I/O memory to talk with hardware 298
PIO devices access 298
MMIO devices access 299
__iomem cookie 300
Memory (re)mapping 302
kmap 302
Mapping kernel memory to user space 303
Using remap_pfn_range 303

Using io_remap_pfn_range 305

The mmap file operation 305
Implementing mmap in the kernel 307

Linux caching system 308
What is a cache? 308
CPU cache — memory caching 309

The Linux page cache — disk caching 310
Specialized caches (user space caching) 310

Why delay writing data to disk? 310
Write caching strategies 311

The flusher threads 312
Device-managed resources — Devres 312

[vii]

