O'REILLY

High Pertormance

= THERESpark (2R

¥ K% kit Holden Karau, Rachel Warren &

= M aESpark wem
High Performance Spark

Holden Karau, Rachel Warren &

O'REILLY™

O'Reilly Media, Inc. ¥ 4X & B X 5) it H AR

Beijing « Boston + Farnham - Sebastopol « Tokyo

FR FREAFHMRA

BB R4 B (CIP) ##F

5 1 BB Spark: #& 3C/) K 4 - F 95 (Holden
Karau), (1) 77 Y1 /K - ik & (Rachel Warren) 3. — 5% £
A — P A AR RS ORS HRHE L 2018.2

45 44 J§ 3C : High Performance Spark

ISBN 978—-7-5641 7518 -4

.0/ 1I.0%:- @F:- [I.OHKHFELH
B V. OTP274
[R AR B 5 CTP B 12 52 (201 7) 55 296215 5
El%:10-2017-431 5

© 2017 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University Press,
2018. Authorized reprint of the original English edition, 2017 O'Reilly Media, Inc., the owner of all
rights to publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
R M O'Reilly Media, Inc. & 2017,

XL PRI RS RFHEIRAE IR 2018, ¥ AP AR & B MR Ao 4K 2 1 5] b R AL e 45 4R R HY AT
H # —— O'Reilly Media, Inc.494F 7T,

SRAIT A« A AF T AR P 69 4T3 o e 4 30 R AF AT X E b,

fa PEfE Spark CREZ BRSO

AR A AT AR m KA R

oo hb. FEATPURERE 295 MEE 210096
HOom A TR

] it : http//www .seupress.com

i FHEF: press@seupress.com

Kl < N T R S = BN R PR A A
: 787 2K X 980 £ K 16 JF 4~
2 2253

: 441 TF

. 2018 4E 2 A% 1 I

WK: 2018 4F 2 HEE 1 WENKI

: ISBN 978 =7 - 5641 - 7518 - 4

: 88.00 JT

A3 FNEHI
Sdn oSSR M

At [A5 5 A ED 2 R B () L S E R R . I (fF ED) ¢ 025 - 83791830

Preface

We wrote this book for data engineers and data scientists who are looking to get the
most out of Spark. If you've been working with Spark and invested in Spark but your
experience so far has been mired by memory errors and mysterious, intermittent fail-
ures, this book is for you. If you have been using Spark for some exploratory work or
experimenting with it on the side but have not felt confident enough to put it into
production, this book may help. If you are enthusiastic about Spark but have not seen
the performance improvements from it that you expected, we hope this book can
help. This book is intended for those who have some working knowledge of Spark,
and may be difficult to understand for those with little or no experience with Spark or
distributed computing. For recommendations of more introductory literature see
“Supporting Books and Materials” on page x.

We expect this text will be most useful to those who care about optimizing repeated
queries in production, rather than to those who are doing primarily exploratory
work. While writing highly performant queries is perhaps more important to the data
engineer, writing those queries with Spark, in contrast to other frameworks, requires
a good knowledge of the data, usually more intuitive to the data scientist. Thus it may
be more useful to a data engineer who may be less experienced with thinking criti-
cally about the statistical nature, distribution, and layout of data when considering
performance. We hope that this book will help data engineers think more critically
about their data as they put pipelines into production. We want to help our readers
ask questions such as “How is my data distributed?”, “Is it skewed?”, “What is the
range of values in a column?”, and “How do we expect a given value to group?” and
then apply the answers to those questions to the logic of their Spark queries.

However, even for data scientists using Spark mostly for exploratory purposes, this
book should cultivate some important intuition about writing performant Spark
queries, so that as the scale of the exploratory analysis inevitably grows, you may have
a better shot of getting something to run the first time. We hope to guide data scien-
tists, even those who are already comfortable thinking about data in a distributed
way, to think critically about how their programs are evaluated, empowering them to

Preface | ix

explore their data more fully, more quickly, and to communicate effectively with any-
one helping them put their algorithms into production.

Regardless of your job title, it is likely that the amount of data with which you are
working is growing quickly. Your original solutions may need to be scaled, and your
old techniques for solving new problems may need to be updated. We hope this book
will help you leverage Apache Spark to tackle new problems more easily and old
problems more efficiently.

First Edition Notes

You are reading the first edition of High Performance Spark, and for that, we thank
you! If you find errors, mistakes, or have ideas for ways to improve this book, please
reach out to us at high-performance-spark@googlegroups.com. If you wish to be
included in a “thanks” section in future editions of the book, please include your pre-
ferred display name.

Supporting Books and Materials

For data scientists and developers new to Spark, Learning Spark by Karau, Konwin-
ski, Wendell, and Zaharia is an excellent introduction,' and Advanced Analytics with
Spark by Sandy Ryza, Uri Laserson, Sean Owen, and Josh Wills is a great book for
interested data scientists. For individuals more interested in streaming, the upcoming
Learning Spark Streaming by Frangois Garillot may also be of use once it is available.

Beyond books, there is also a collection of intro-level Spark training material avail-
able. For individuals who prefer video, Paco Nathan has an excellent introduction
video series on O'Reilly (http://shop.oreilly.com/product/0636920036807.do). Com-
mercially, Databricks (https://databricks.com/spark/training) as well as Cloudera
(https://www.cloudera.com/more/training/courses/developer-training-for-spark-and-
hadoop.html) and other Hadoop/Spark vendors offer Spark training. Previous
recordings of Spark camps, as well as many other great resources, have been posted
on the Apache Spark documentation page (http://spark.apache.org/documenta
tion.html).

If you don’t have experience with Scala, we do our best to convince you to pick up
Scala in Chapter 1, and if you are interested in learning, Programming Scala, 2nd Edi-
tion, by Dean Wampler and Alex Payne is a good introduction.’

1 Though we may be biased.

2 Although it’s important to note that some of the practices suggested in this book are not common practice in
Spark code.

x | Preface

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

g This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

\

internals, and will likely break in future minor releases of Apache
Spark. You’ve been warned—but we totally understand you aren’t
\ going to pay much attention to that because neither would we.

%‘ Examples prefixed with “Evil” depend heavily on Apache Spark

Preface | xi

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download from
the High Performance Spark GitHub repository (https://github.com/high-
performance-spark/high-performance-spark-examples) and some of the testing code is
available at the “Spark Testing Base” GitHub repository (https://github.com/holdenk/
spark-testing-base) and the Spark Validator repo (https://github.com/holdenk/spark-
validator). Structured Streaming machine learning examples, which are generally in
the “evil” category discussed under “Conventions Used in This Book” on page xi, are
available at https://github.com/holdenk/spark-structured-streaming-ml.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you're reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. The code is also avail-
able under an Apache 2 License. Incorporating a significant amount of example code
from this book into your product’s documentation may require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “High Performance Spark by Holden
Karau and Rachel Warren (O’Reilly). Copyright 2017 Holden Karau, Rachel Warren,
978-1-491-94320-5.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

0'Reilly Safari

¢~ __ .- Safari (formerly Safari Books Online) is a membership-based
P@@ il | training and reference platform for enterprise, government,
! educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac-
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Pro-
fessional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco
Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt,
Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett,
and Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

i | Preface

How to Contact the Authors

For feedback, email us at high-performance-spark@googlegroups.com. For random
ramblings, occasionally about Spark, follow us on twitter:

Holden: http://twitter.com/holdenkarau

Rachel: https://twitter.com/warre_n_peace

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

The authors would like to acknowledge everyone who has helped with comments and
suggestions on early drafts of our work. Special thanks to Anya Bida, Jakob Odersky,
and Katharine Kearnan for reviewing early drafts and diagrams. We’d like to thank
Mahmoud Hanafy for reviewing and improving the sample code as well as early
drafts. We'd also like to thank Michael Armbrust for reviewing and providing feed-
back on early drafts of the SQL chapter. Justin Pihony has been one of the most active
early readers, suggesting fixes in every respect (language, formatting, etc.).

Thanks to all of the readers of our O’Reilly early release who have provided feedback
on various errata, including Kanak Kshetri and Rubén Berenguel.

Preface | xiii

We'd also like to thank our dedicated (official) technical reviewers, Neelesh Srinivas
Salian and Denny Lee, who read through every page providing detailed feedback and
helped us decide what content belonged where.

Finally, thank you to our respective employers for being understanding as we’ve
worked on this book. Especially Lawrence Spracklen who insisted we mention him
here :p.

xiv | Preface

Table of Contents

1. Introduction to High Performance Spark...........ccovvviiiiiiiiiiiiininiines. 1

What Is Spark and Why Performance Matters 1
What You Can Expect to Get from This Book 2
Spark Versions 3
Why Scala? 3
To Be a Spark Expert You Have to Learn a Little Scala Anyway 3
The Spark Scala API Is Easier to Use Than the Java API 4
Scala Is More Performant Than Python 4
Why Not Scala? 4
Learning Scala 5
Conclusion 6
2. How Spark Works........ e e wonw e Senants Kishaion) SHERPVIRS S iy oo alonsle ol 7
How Spark Fits into the Big Data Ecosystem 8
Spark Components 8
Spark Model of Parallel Computing: RDDs 10
Lazy Evaluation 11
In-Memory Persistence and Memory Management 13
Immutability and the RDD Interface 14
Types of RDDs 16
Functions on RDDs: Transformations Versus Actions 17
Wide Versus Narrow Dependencies 17
Spark Job Scheduling 19
Resource Allocation Across Applications 20
The Spark Application 20

The Anatomy of a Spark Job 22

The DAG
Jobs
Stages
Tasks
Conclusion

. DataFrames, Datasets, and Spark SQL...........ccovvviiiiiiiiiiiiiiiiiiin..

Getting Started with the SparkSession (or HiveContext or SQLContext)
Spark SQL Dependencies
Managing Spark Dependencies
Avoiding Hive JARs
Basics of Schemas
DataFrame API
Transformations
Multi-DataFrame Transformations
Plain Old SQL Queries and Interacting with Hive Data
Data Representation in DataFrames and Datasets
Tungsten
Data Loading and Saving Functions
DataFrameWriter and DataFrameReader
Formats
Save Modes
Partitions (Discovery and Writing)
Datasets
Interoperability with RDDs, DataFrames, and Local Collections
Compile-Time Strong Typing
Easier Functional (RDD “like”) Transformations
Relational Transformations
Multi-Dataset Relational Transformations
Grouped Operations on Datasets
Extending with User-Defined Functions and Aggregate Functions (UDFs,
UDAFs)
Query Optimizer
Logical and Physical Plans
Code Generation
Large Query Plans and Iterative Algorithms
Debugging Spark SQL Queries
JDBC/ODBC Server
Conclusion

JOINS (SQUANTICONR) . & cos56 s s 55 6 08 6 06 wiwis i s 5w s 508 8 95 ki 506 56047508 6 5 5.58.6 A 8

Core Spark Joins

22
23
23
24
26

27
28
30
31
32
33
36
36
48
49
49
50
51
51
52
61
62
62
63
64
65
65
65
66

67
69
69
70
70
71
71
72

75
75

iv

| Table of Contents

Choosing a Join Type 77

Choosing an Execution Plan 78
Spark SQL Joins 81
DataFrame Joins 82
Dataset Joins . 85
Conclusion 86
5. Effective Transformations............covecsvisssssinsssssvosssnssvasusasanes 87
Narrow Versus Wide Transformations 88
Implications for Performance 90
Implications for Fault Tolerance 91
The Special Case of coalesce 92
What Type of RDD Does Your Transformation Return? 92
Minimizing Object Creation 94
Reusing Existing Objects 94
Using Smaller Data Structures 97
Iterator-to-Iterator Transformations with mapPartitions 100
What Is an Iterator-to-Iterator Transformation? 101
Space and Time Advantages 102
An Example 103
Set Operations 106
Reducing Setup Overhead 107
Shared Variables 108
Broadcast Variables 108
Accumulators 109
Reusing RDDs 114
Cases for Reuse 114
Deciding if Recompute Is Inexpensive Enough 117
Types of Reuse: Cache, Persist, Checkpoint, Shuffle Files 118
Alluxio (nee Tachyon) 122
LRU Caching 123
Noisy Cluster Considerations 124
Interaction with Accumulators 125
Conclusion 126
6. Working with Key/ValueData...................... .. R P LU 127
The Goldilocks Example 129
Goldilocks Version 0: Iterative Solution 130
How to Use PairRDDFunctions and OrderedRDDFunctions 132
Actions on Key/Value Pairs 133
What's So Dangerous About the groupByKey Function 134
Goldilocks Version 1: groupByKey Solution 134

Table of Contents | v

Choosing an Aggregation Operation

Dictionary of Aggregation Operations with Performance Considerations
Multiple RDD Operations

Co-Grouping
Partitioners and Key/Value Data

Using the Spark Partitioner Object

Hash Partitioning

Range Partitioning

Custom Partitioning

Preserving Partitioning Information Across Transformations

Leveraging Co-Located and Co-Partitioned RDDs

Dictionary of Mapping and Partitioning Functions PairRDDFunctions
Dictionary of OrderedRDDOperations

Sorting by Two Keys with SortByKey
Secondary Sort and repartitionAndSortWithinPartitions

Leveraging repartitionAndSortWithinPartitions for a Group by Key and

Sort Values Function

How Not to Sort by Two Orderings

Goldilocks Version 2: Secondary Sort

A Different Approach to Goldilocks

Goldilocks Version 3: Sort on Cell Values
Straggler Detection and Unbalanced Data

Back to Goldilocks (Again)

Goldilocks Version 4: Reduce to Distinct on Each Partition
Conclusion

Going Beyond Scala....... i i TR e M B A WSS W AN A W Y S

Beyond Scala within the JVM
Beyond Scala, and Beyond the JVM
How PySpark Works
How SparkR Works
Spark.jl (Julia Spark)
How Eclair JS Works
Spark on the Common Language Runtime (CLR)—C# and Friends
Calling Other Languages from Spark
Using Pipe and Friends
JNI
Java Native Access (JNA)
Underneath Everything Is FORTRAN
Getting to the GPU
The Future
Conclusion

138
138
141
141
142
144
144
144
145
146
146
148
149
151
151

152
155
156
159
164
165
167
167
173

175
176
180
181
189
191
192
193
193
193
195
198
199
200
201
201

vi

| Table of Contents

8. Testingand Validation................covvviiiinnnnn, i e 9 PR 203

Unit Testing 203
General Spark Unit Testing 204
Mocking RDDs 208

Getting Test Data : 210
Generating Large Datasets 210
Sampling 211

Property Checking with ScalaCheck 213
Computing RDD Difference 213

Integration Testing 216
Choosing Your Integration Testing Environment 216

Verifying Performance 217
Spark Counters for Verifying Performance 217
Projects for Verifying Performance 218

Job Validation 219

Conclusion 220

9. SparkMLIbandML. .. sz..ovisusissnsnatiasnnssasnsssvmssnsuns D g 221

Choosing Between Spark MLIib and Spark ML 221

Working with MLIlib 222
Getting Started with MLIib (Organization and Imports) 222
MLIib Feature Encoding and Data Preparation 223
Feature Scaling and Selection 228
MLIib Model Training 228
Predicting 229
Serving and Persistence 230
Model Evaluation 232

Working with Spark ML 233
Spark ML Organization and Imports 233
Pipeline Stages 234
Explain Params 235
Data Encoding 236
Data Cleaning 239
Spark ML Models 239
Putting It All Together in a Pipeline 240
Training a Pipeline 241
Accessing Individual Stages 241
Data Persistence and Spark ML 242
Extending Spark ML Pipelines with Your Own Algorithms 244
Model and Pipeline Persistence and Serving with Spark ML 252

General Serving Considerations 252

Conclusion 253

Table of Contents | vii

10. Spark Components and Packages.covveiviuiiiniiinninnennnnnnnn..
Stream Processing with Spark

Sources and Sinks

Batch Intervals

Data Checkpoint Intervals

Considerations for DStreams

Considerations for Structured Streaming

High Availability Mode (or Handling Driver Failure or Checkpointing)

GraphX
Using Community Packages and Libraries

Creating a Spark Package

Conclusion

257
257
259
260
261
262
270
271
271
273
274

275

viii

Table of Contents

CHAPTER 1
Introduction to High Performance Spark

This chapter provides an overview of what we hope you will be able to learn from this
book and does its best to convince you to learn Scala. Feel free to skip ahead to Chap-
ter 2 if you already know what you’re looking for and use Scala (or have your heart
set on another language).

What Is Spark and Why Performance Matters

Apache Spark is a high-performance, general-purpose distributed computing system
that has become the most active Apache open source project, with more than 1,000
active contributors.' Spark enables us to process large quantities of data, beyond what
can fit on a single machine, with a high-level, relatively easy-to-use APIL Spark’s
design and interface are unique, and it is one of the fastest systems of its kind.
Uniquely, Spark allows us to write the logic of data transformations and machine
learning algorithms in a way that is parallelizable, but relatively system agnostic. So it
is often possible to write computations that are fast for distributed storage systems of
varying kind and size.

However, despite its many advantages and the excitement around Spark, the simplest
implementation of many common data science routines in Spark can be much slower
and much less robust than the best version. Since the computations we are concerned
with may involve data at a very large scale, the time and resources that gains from
tuning code for performance are enormous. Performance does not just mean run
faster; often at this scale it means getting something to run at all. It is possible to con-
struct a Spark query that fails on gigabytes of data but, when refactored and adjusted
with an eye toward the structure of the data and the requirements of the cluster,

1 From http://spark.apache.org/.

succeeds on the same system with terabytes of data. In the authors’ experience writ-
ing production Spark code, we have seen the same tasks, run on the same clusters,
run 100x faster using some of the optimizations discussed in this book. In terms of
data processing, time is money, and we hope this book pays for itself through a
reduction in data infrastructure costs and developer hours.

Not all of these techniques are applicable to every use case. Especially because Spark
is highly configurable and is exposed at a higher level than other computational
frameworks of comparable power, we can reap tremendous benefits just by becoming
more attuned to the shape and structure of our data. Some techniques can work well
on certain data sizes or even certain key distributions, but not all. The simplest exam-
ple of this can be how for many problems, using groupByKey in Spark can very easily
cause the dreaded out-of-memory exceptions, but for data with few duplicates this
operation can be just as quick as the alternatives that we will present. Learning to
understand your particular use case and system and how Spark will interact with it is
a must to solve the most complex data science problems with Spark.

What You Can Expect to Get from This Book

Our hope is that this book will help you take your Spark queries and make them
faster, able to handle larger data sizes, and use fewer resources. This book covers a
broad range of tools and scenarios. You will likely pick up some techniques that
might not apply to the problems you are working with, but that might apply to a
problem in the future and may help shape your understanding of Spark more gener-
ally. The chapters in this book are written with enough context to allow the book to
be used as a reference; however, the structure of this book is intentional and reading
the sections in order should give you not only a few scattered tips, but a comprehen-
sive understanding of Apache Spark and how to make it sing.

It’s equally important to point out what you will likely not get from this book. This
book is not intended to be an introduction to Spark or Scala; several other books and
video series are available to get you started. The authors may be a little biased in this
regard, but we think Learning Spark by Karau, Konwinski, Wendell, and Zaharia as
well as Paco Nathan’s introduction video series (http://shop.oreilly.com/product/
0636920036807.do) are excellent options for Spark beginners. While this book is
focused on performance, it is not an operations book, so topics like setting up a clus-
ter and multitenancy are not covered. We are assuming that you already have a way
to use Spark in your system, so we won’t provide much assistance in making higher-
level architecture decisions. There are future books in the works, by other authors, on
the topic of Spark operations that may be done by the time you are reading this one.
If operations are your show, or if there isn’t anyone responsible for operations in
your organization, we hope those books can help you.

2 | Chapter1:Introduction to High Performance Spark

