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Preface

We wrote this book for data engineers and data scientists who are looking to get the
most out of Spark. If you've been working with Spark and invested in Spark but your
experience so far has been mired by memory errors and mysterious, intermittent fail-
ures, this book is for you. If you have been using Spark for some exploratory work or
experimenting with it on the side but have not felt confident enough to put it into
production, this book may help. If you are enthusiastic about Spark but have not seen
the performance improvements from it that you expected, we hope this book can
help. This book is intended for those who have some working knowledge of Spark,
and may be difficult to understand for those with little or no experience with Spark or
distributed computing. For recommendations of more introductory literature see
“Supporting Books and Materials” on page x.

We expect this text will be most useful to those who care about optimizing repeated
queries in production, rather than to those who are doing primarily exploratory
work. While writing highly performant queries is perhaps more important to the data
engineer, writing those queries with Spark, in contrast to other frameworks, requires
a good knowledge of the data, usually more intuitive to the data scientist. Thus it may
be more useful to a data engineer who may be less experienced with thinking criti-
cally about the statistical nature, distribution, and layout of data when considering
performance. We hope that this book will help data engineers think more critically
about their data as they put pipelines into production. We want to help our readers
ask questions such as “How is my data distributed?”, “Is it skewed?”, “What is the
range of values in a column?”, and “How do we expect a given value to group?” and
then apply the answers to those questions to the logic of their Spark queries.

However, even for data scientists using Spark mostly for exploratory purposes, this
book should cultivate some important intuition about writing performant Spark
queries, so that as the scale of the exploratory analysis inevitably grows, you may have
a better shot of getting something to run the first time. We hope to guide data scien-
tists, even those who are already comfortable thinking about data in a distributed
way, to think critically about how their programs are evaluated, empowering them to
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explore their data more fully, more quickly, and to communicate effectively with any-
one helping them put their algorithms into production.

Regardless of your job title, it is likely that the amount of data with which you are
working is growing quickly. Your original solutions may need to be scaled, and your
old techniques for solving new problems may need to be updated. We hope this book
will help you leverage Apache Spark to tackle new problems more easily and old
problems more efficiently.

First Edition Notes

You are reading the first edition of High Performance Spark, and for that, we thank
you! If you find errors, mistakes, or have ideas for ways to improve this book, please
reach out to us at high-performance-spark@googlegroups.com. If you wish to be
included in a “thanks” section in future editions of the book, please include your pre-
ferred display name.

Supporting Books and Materials

For data scientists and developers new to Spark, Learning Spark by Karau, Konwin-
ski, Wendell, and Zaharia is an excellent introduction,' and Advanced Analytics with
Spark by Sandy Ryza, Uri Laserson, Sean Owen, and Josh Wills is a great book for
interested data scientists. For individuals more interested in streaming, the upcoming
Learning Spark Streaming by Frangois Garillot may also be of use once it is available.

Beyond books, there is also a collection of intro-level Spark training material avail-
able. For individuals who prefer video, Paco Nathan has an excellent introduction
video series on O'Reilly (http://shop.oreilly.com/product/0636920036807.do). Com-
mercially, Databricks (https://databricks.com/spark/training) as well as Cloudera
(https://www.cloudera.com/more/training/courses/developer-training-for-spark-and-
hadoop.html) and other Hadoop/Spark vendors offer Spark training. Previous
recordings of Spark camps, as well as many other great resources, have been posted
on the Apache Spark documentation page (http://spark.apache.org/documenta
tion.html).

If you don’t have experience with Scala, we do our best to convince you to pick up
Scala in Chapter 1, and if you are interested in learning, Programming Scala, 2nd Edi-
tion, by Dean Wampler and Alex Payne is a good introduction.’

1 Though we may be biased.

2 Although it’s important to note that some of the practices suggested in this book are not common practice in
Spark code.
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Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

g This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

\

internals, and will likely break in future minor releases of Apache
Spark. You’ve been warned—but we totally understand you aren’t
\ going to pay much attention to that because neither would we.

%‘ Examples prefixed with “Evil” depend heavily on Apache Spark
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Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download from
the High Performance Spark GitHub repository (https://github.com/high-
performance-spark/high-performance-spark-examples) and some of the testing code is
available at the “Spark Testing Base” GitHub repository (https://github.com/holdenk/
spark-testing-base) and the Spark Validator repo (https://github.com/holdenk/spark-
validator). Structured Streaming machine learning examples, which are generally in
the “evil” category discussed under “Conventions Used in This Book” on page xi, are
available at https://github.com/holdenk/spark-structured-streaming-ml.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you're reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. The code is also avail-
able under an Apache 2 License. Incorporating a significant amount of example code
from this book into your product’s documentation may require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “High Performance Spark by Holden
Karau and Rachel Warren (O’Reilly). Copyright 2017 Holden Karau, Rachel Warren,
978-1-491-94320-5.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

0'Reilly Safari

¢~ __ .- Safari (formerly Safari Books Online) is a membership-based
P@@ il | training and reference platform for enterprise, government,
! educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac-
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Pro-
fessional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco
Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt,
Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett,
and Course Technology, among others.

For more information, please visit http://oreilly.com/safari.
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How to Contact the Authors

For feedback, email us at high-performance-spark@googlegroups.com. For random
ramblings, occasionally about Spark, follow us on twitter:

Holden: http://twitter.com/holdenkarau

Rachel: https://twitter.com/warre_n_peace

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1
Introduction to High Performance Spark

This chapter provides an overview of what we hope you will be able to learn from this
book and does its best to convince you to learn Scala. Feel free to skip ahead to Chap-
ter 2 if you already know what you’re looking for and use Scala (or have your heart
set on another language).

What Is Spark and Why Performance Matters

Apache Spark is a high-performance, general-purpose distributed computing system
that has become the most active Apache open source project, with more than 1,000
active contributors.' Spark enables us to process large quantities of data, beyond what
can fit on a single machine, with a high-level, relatively easy-to-use APIL Spark’s
design and interface are unique, and it is one of the fastest systems of its kind.
Uniquely, Spark allows us to write the logic of data transformations and machine
learning algorithms in a way that is parallelizable, but relatively system agnostic. So it
is often possible to write computations that are fast for distributed storage systems of
varying kind and size.

However, despite its many advantages and the excitement around Spark, the simplest
implementation of many common data science routines in Spark can be much slower
and much less robust than the best version. Since the computations we are concerned
with may involve data at a very large scale, the time and resources that gains from
tuning code for performance are enormous. Performance does not just mean run
faster; often at this scale it means getting something to run at all. It is possible to con-
struct a Spark query that fails on gigabytes of data but, when refactored and adjusted
with an eye toward the structure of the data and the requirements of the cluster,

1 From http://spark.apache.org/.




succeeds on the same system with terabytes of data. In the authors’ experience writ-
ing production Spark code, we have seen the same tasks, run on the same clusters,
run 100x faster using some of the optimizations discussed in this book. In terms of
data processing, time is money, and we hope this book pays for itself through a
reduction in data infrastructure costs and developer hours.

Not all of these techniques are applicable to every use case. Especially because Spark
is highly configurable and is exposed at a higher level than other computational
frameworks of comparable power, we can reap tremendous benefits just by becoming
more attuned to the shape and structure of our data. Some techniques can work well
on certain data sizes or even certain key distributions, but not all. The simplest exam-
ple of this can be how for many problems, using groupByKey in Spark can very easily
cause the dreaded out-of-memory exceptions, but for data with few duplicates this
operation can be just as quick as the alternatives that we will present. Learning to
understand your particular use case and system and how Spark will interact with it is
a must to solve the most complex data science problems with Spark.

What You Can Expect to Get from This Book

Our hope is that this book will help you take your Spark queries and make them
faster, able to handle larger data sizes, and use fewer resources. This book covers a
broad range of tools and scenarios. You will likely pick up some techniques that
might not apply to the problems you are working with, but that might apply to a
problem in the future and may help shape your understanding of Spark more gener-
ally. The chapters in this book are written with enough context to allow the book to
be used as a reference; however, the structure of this book is intentional and reading
the sections in order should give you not only a few scattered tips, but a comprehen-
sive understanding of Apache Spark and how to make it sing.

It’s equally important to point out what you will likely not get from this book. This
book is not intended to be an introduction to Spark or Scala; several other books and
video series are available to get you started. The authors may be a little biased in this
regard, but we think Learning Spark by Karau, Konwinski, Wendell, and Zaharia as
well as Paco Nathan’s introduction video series (http://shop.oreilly.com/product/
0636920036807.do) are excellent options for Spark beginners. While this book is
focused on performance, it is not an operations book, so topics like setting up a clus-
ter and multitenancy are not covered. We are assuming that you already have a way
to use Spark in your system, so we won’t provide much assistance in making higher-
level architecture decisions. There are future books in the works, by other authors, on
the topic of Spark operations that may be done by the time you are reading this one.
If operations are your show, or if there isn’t anyone responsible for operations in
your organization, we hope those books can help you.
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