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Preface

Graph theory is one of the branches of modern mathematics which
has shown impressive advances in recent years. Graph theory is widely
applied in physics, chemistry, biology, network theory, information sciences,
. computer science and other fields, and so it has attracted a great deal of

attention.

Many real-world networks can conveniently be modelled by graphs or
digraphs. Examples include a railroad network with nodes presenting rail-
road stations and links corresponding to railways between two stations, or
a communication network with nodes presenting cities, and links presenting
communication channels. In particular, a wide variety of systems can be
described using complex networks. Such systems include: the World Wide
Web, which is a virtual network of Web pages connected by hyperlinks;
the cell, where we model the chemicals by nodes and their interactions by
edges; and the food chain webs, the networks by which human diseases

spread, human collaboration networks etc.

Factor theory of graph is an important branch in graph theory. Fac-
tors, factorizations and orthogonal factorizations of graphs have extensive
applications in various areas, e.g., combinatorial design, network design,
circuit layout, scheduling problems, the file transfer problems and so on.
The file transfer problem can be modeled as (0, f)-factorizations (or f-
colorings) of a graph. Orthogonal factorizations in graphs or digraphs have
attracted a great deal of attention due to their applications in combina-
torial design, network design, circuit layout, and so on. For example, a
pair of orthogonal Latin squares of order n is equivalent to two orthogonal
1-factorizations of a complete bipartite graph K, ,, which was first found
by Euler. Horton presented that a Room square of order 2n was related to

the orthogonal 1-factorization of Ko,.

In this book, we mainly discuss the pr(;blems with the orthogonal

factorization of graphs. This book is divided into five chapters.



In Chapter 1, we show definitions, notations and motivation to study

orthogonal factorizations in graphs or digraphs.

In Chapter 2, we investigate 6rthogonal factorizations in some graphs
which are natural improvements and generalizations of the previous results.
This chapter is divided into two parts. First, We show a result on orthog-
onal factorizations in (mg + k — 1,mf — k + 1)-graphs. Second, we study
(g, f)-factorizations orthogonal to k vertex disjoint subgraphs of G, and

obtain some new results on orthogonal (g, f)-factorizations in some graphs.

In Chapter 3, we study 2-orthogonal factorizations in some graph-
s which are-natural generalizations of 1-orthogonal factorizations. This
chapter is divided into four parts. First, We investigate 2-orthogonal (0, f)-
factorizations in (0, mf — m + 1)-graphs, and put forward a sufficient con-
dition for (0, mf —m+ 1)-graphs to have 2-orthogonal (0, f)-factorizations.
Second, we study 2-orthogonal [0, k;]7*-factorizations in [0, ki + kg2 + -+ +
~ km — m + 1]-graphs, and obtain a sufficient condition for the existence of
2-orthogonal [0, k;]7*-factorizations in [0, k1 + k2 + - - - + km — m + 1]-graphs.
Third, we consider 2-orthogonal (g, f)-factorizations in (mg+m — 1, mf —
m+ 1)-graphs, and get a new result on 2-orthogonal (g, f)-factorizations in
(mg+m —1,mf —m+ 1)-graphs. Finally, we study the existence of sub-
graphs with 2-orthogonal (g, f)-factorizations in (mg + k, m f|‘ — k)-graphs,

and obtain a new result on this problem.

In Chapter 4, we first investigate the randomly r-orthogonal factor-
izations in graphs, and present some results on the randomly r-orthogonal
factorizations in graphs. Second, we study the factorizations r-orthogonal

to vertex disjoint subgraphs, and get some results.

In Chapter 5, we investigate orthogonal factorizations of digraphs.
This chapter is divided into three parts. First, we study r-orthogonal
(0, f)-factorizations of (0,mf — m + 1)-digraphs. Second, we investigate

the existence of subdigraphs with orthogonal (g, f)-factorizations in (mg +
(k—1)r,mf — (k — 1)r)-digraphs. Finally, we consider (0, f)-factorizations



r-orthogonal to vertex disjoint subdigraphs, and obtain a result on (0, f)-
factorizations r-orthogonal to vertex disjoint subdigraphs in (0, mf — (m —

1)r)-digraphs.

This work is sponsored by Six Big Talent Peak of Jiangsu Province
(Grant No. JY-022) and 333 Project of Jiangsu Province.

Thanks to Zhiren Sun, Hongxia Liu, Wei Gao, Fan Yang, Qiuxiang
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Chapter 1 Basic Terminology

This chapter is concerned with the basic notation and terminology of
graph theory which will be used throughout this book. We will briefly explain
the basic notations and definitions in the first section and will discuss the
motivation to study the existence of orthogonal factorizations in graphs or
digraphs in the second section. The notations and definitions mainly follows
that of Bondy and Murty [1], Chartrand and Lesniak [2] as well as Akiyama
and Kano [3] and we direct the reader to these books for any information not
given here. Special notations and definitions will be presented where needed.

1.1 Definitions and Notations

In Chapters 24 of this book, all graphs considered will be finite undi-
rected graphs without loops or multiple edges. Let G be a graph. We denote
its vertex set and edge set by V(G) and E(G), respectively. A graph H is
called a subgraph of G if V(H) C V(G) and E(H) C E(G). A subgraph
H of G is called a spanning subgraph of G if V(H) = V(G). For arbitrary
z € V(G), dg(x) denotes the degree of z in G. Let S and T be two disjoint
vertex subsets of G. We denote the set of edges with one end in S and the
other in T by E¢(S,T), and write

EG(SvT) = IEG(S, T)I

For S ¢ V(G) and A C E(G), G[S] and G[A] are two subgraphs of a graph
GG induced by S and A, respectively. We write

G-S=G[V(G)\S]

and

G- A=G[E@G)\ Al



2 Orthogonal Factorizations in Graphs

For any function ¢ defined on V(G), we write

P(X) =Y (@)

zeX

and ¢(@) = 0, where X C V(G). Especially
da(X) = dg().

zeX

Let g,f : V(G) — N be two functions defined on V(G) such that
g(z) < f(z) for arbitrary z € V(G). If C is a component of G — (SUT)
with g(z) = f(z) for every z € V(C), then we call that C' is odd or even in
terms of

ec(T,V(C)) + F(V(C))

being odd or even, respectively. A spanning subgraph F' of a graph G with

9(z) < dp(z) < f(2)

for every z € V(G) is called a (g, f)-factor of G. Especially, G is said
to be a (g, f)-graph if G itself is a (g, f)-factor. A (g, f)-factorization F =
{F1, Fy,--- , Fy,} of a graph G is a partition of E(G) into edge-disjoint (g, f)-
factors Fy, Fy,--- , Fy,,. A subgraph H of a graph G is called an m-subgraph
if ‘H admits m edges in total. Let H be an mr-subgraph of a graph G
and F' = {F}, F5,--- , F,,} be a (g, f)-factorization of a graph G. A (g, f)-
factorization F' = {Fy, Fy,--- , F,,} is r-orthogonal to H if

|E(F,)NE(H)|=r for1<i<m.

We say that a graph G admits (g, f)-factorizations randomly r-orthogonal
to H if for arbitrary partition {A;, As, -+, A} of E(H) satisfying |A;| =
r, there is a (g, f)-factorization F' = {Fy, Fy,--- ,F,,} of a graph G with
A; CE(F),i=1,2,--- ,m. It is easy to see that randomly 1-orthogonal is
equivalent to 1-orthogonal and 1-orthogonal is also said to be orthogonal.

In Chapter 5 of this book, we only consider finite digraphs which have
neither loops nor parallel arcs. Let G be a digraph with vertex set V(G) and
arc set F(G). For any z € V(G), dg(z) and df(z) denote the indegree and
outdegree of = in G, respectively. We denote by zy the arc with tail z and
head y. A subdigraph H of a digraph G is said to be an m-subdigraph if H
admits m arcs. Let ¢ = (¢7,9") and f = (f~, f*) be pairs of nonnegative
integer-valued functions defined on V(G) with ¢~ (z) < f~(z) and ¢ (z) <
ft(z) for each z € V(G). A digraph G satisfying

9™ (2) S dg(z) < f~(2)
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and
g (z) < di(z) < fT(2)

for any z € V(G) is called a (g, f)-digraph. A spanning subdigraph F' of
a digraph G is said to be a (g, f)-factor of G if F itself is a (g, f)-digraph.
A (g, f)-factorization F = {Fy, Fy,--- , F,,} of a digraph G is a partition
of E(G) into arc-disjoint (g, f)-factors Fy, Fy,---, F,. Let H be an mr-

subdigraph of a digraph G and F = {Fy, F5,--- , F},,} be a (g, f)-factorization
of a digraph G. If

|[E(H) NE(F)| =7 for1<i<m,

then F = {Fy, F,,--- , F,} is said to be r-orthogonal to H. Especially, 1-
orthogonal is abbreviated as orthogonal. Furthermore, such a factorization
of a digraph G is called an r-orthogonal factorization of a digraph G. For
convenience, we write g < f if

‘g (2) < f(z) and g*(z) < fH(2)
for each z € V(G), and write g > k if
min{g~(z),g"(z)} > k

for each z € V(G). Furthermore, we shall write mf +n for (mf~+n,mf* +
Let G be a digraph. For any S,T C V(G), we write

Ec(S,T) ={zy:zy € E(G),z € S,y € T},

and set
ec(S,T) = |Ec(S,T)|.
We write
0(S) =) o)
z€eS

and (@) = 0, where ¢ is any function defined on V(G) and S C V(G).

1.2 Motivation to Study Orthogonal Factorizations in

Graphs or Digraphs

Many real-world networks can conveniently be modelled by graphs or
networks. Examples include a railroad network with nodes and links mod-
elling railroad stations and railways between two stations, respectively, or a
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communication network with nodes presenting cities, and links correspond-
ing to communication channels, or the World Wide Web with nodes and links
modelling Web pages and hyperlinks between Web pages, respectively. Or-
thogonal factorizations in graphs or networks have attracted a great deal of
attention due to their applications in combinatorial design, network design,
circuit layout, and so on. For example, a pair of orthogonal Latin squares of
order n is equivalent to two orthogonal 1-factorizations of a complete bipar-
tite graph K, ,,, which was first found by Euler [4]. Horton [5] presented that
a Room square of order 2n was related to the orthogonal 1-factorization of
Ks,. Many other applications in this field can be found in a current survey
[6]. v
Alspach, Heinrich and Liu [6] posed the following problem:

Problem Given a subgraph H, does there exist a factorization F' of G
with some fixed type orthogonal to H?



Chapter 2 1-Orthogonal Factorizations in
Graphs

Let G be a graph, and let g and f be two integer-valued functions defined
on V(G) such that

0 < g(z) < f(x)

for each z € V(G). A (g, f)-factor of G is a spanning subgraph F of G
satisfying that

g(z) < dp(z) < f(2)

for each z € V(G). In particular, G is called a (g, f)-graph if G itself is a
(g, f)-factor. A subgraph H of G is called an m-subgraph if H has m edges
in total. A (g, f)-factorization F' = {F}, Fy,--- , F;,} of G is a partition of
E(G) into edge-disjoint (g, f)-factors F, Fy, - - - , F,,. Similarly, we can define
[0, k;]™_;-factorization and (0, f)-factorization. Let H be an m-subgraph of
a graph G. A (g, f)-factorization F' = {F}, F5,--- , F},} of G is 1-orthogonal
to H if

|E(H)NE(F)| =1

for 1 <1 < m. l-orthogonal is also said to be orthogonal. Similarly, we can
define orthogonal [0, k;|_,-factorization and orthogonal (0, f)-factorization.
In this chapter we investigate orthogonal factorizations in some graphs which
are natural improvements and generalizations of the previous results. This
chapter is divided into two parts. First, we show a result on orthogonal
factorizations in (mg +k — 1,mf — k + 1)-graphs. Second, we study (g, f)-
factorizations orthogonal to k vertex disjoint subgraphs of G, and obtain
some new results on orthogonal (g, f)-factorizations in some graphs.
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2.1 Orthogonal (g, f)-Factorizations in Graphs

Liu [7] investigated orthogonal (g, f)-factorizations in (mg+m—1,mf —
m + 1)-graphs, and obtained a result on orthogonal factorization problems
which is shown in the following.

Theorem 2.1.1  ([7]) Let G be an (mg +m — 1,mf — m + 1)-graph,
where g and f are two integer-valued functions defined on V(G) such that
0 < g(z) < f(z) for each z € V(G). Then for any m-matching M of G there

is a (g, f)-factorization orthogonal to M.

Liu [8] presented a new result on orthogonal (g, f)-factorizations in
(mg+m —1,mf — m + 1)-graphs, which is shown in the following.

Theorem 2.1.2  ([8]) Let G be an (mg + m — 1,mf — m + 1)-graph,
where g and f are two integer-valued functions defined on V(G) such that
0 < g(z) < f(z) for each z € V(G). Let H be a star of G with m edges,
then there exists a (g, f)-factorization of G orthogonal to H.

It is easy to see that m-matching and m-star are both [1,2]-subgraph
with m edges. Yan [9] improved Theorems 2.1.1 and 2.1.2, and got the
following theorem. \ '

Theorem 2.1.3  ([9]) Let m be a positive integer. Let G be a graph
and g(z) < f(z) be two nonnegative integer-valued functions defined on
V(G) for all z € V(G). If G is an (mg +m — 1,mf — m + 1)-graph and
H is a [1,2]-subgraph of G with any m edges of F(G), then there exists a
(9, f)-factorization of G orthogonal to H.

Note that a path of G with m edges is a [1, 2]-subgraph of G with m
edges. Thus, we obtained the following corollary from Theorem 2.1.3.

Corollary 2.1.1  Let m be a positive integer. Let G be a graph and
g(z) < f(z) be two nonnegative integer-valued functions defined on V(G)

forall z € V(QG). If G is an (mg+m —1,mf —m+ 1)-graph and P is a path
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of G with m edges, then there exists a (g, f)-factorization of G orthogonal
to P.
For any subgraph H of G with m édges, Yan [10] proved that an*(mg +
m—1,mf—m+1)-graph has a (g, f)-factorization orthogonal to H, which an
_improvement of Theorems 2.1.1- 2.1.3. This result is shown in the following.
Theorem 2.1.4  ([10]) Let m be a positive integer. Let G be a graph
and g(z) > 2 and f(z) > 5 be integer-valued functions defined on V(G)
for all z € V(G). If G is an (mg+ m — 1,mf — m + 1)-graph and H is a
subgraph of G with m edges of E(G), then there exists a (g, f)-factorization
of G orthogonal to H.
Li and Liu [11] improved Theorem 2.1.4, and obtained a better result
on orthogonal (g, f)-factorizations in (mg +m — 1, mf — m + 1)-graphs.
Theorem 2.1.5  ([11]) Let G be an (mg +m —1,mf —m + 1)-graph,
m > 1 be an integer, f(z) > g(z) > 0 be integer-valued functions defined on
V(G) for all z € V(G), and let H be a subgraph of G with m edges. Then
G has a (g, f)-factorization orthogonal to H.
Feng [12] got a result on orthogonal (0, f)-factorizations in (0, mf —m+
1)-graphs.
Theorem 2.1.6  ([12]) Let G be a (0, mf —m+1)-graph, where f(z) >
0 is an integer-valued function defined on V(G) for all z € V(G). If H is
an arbitrary subgraph with m edges of G, then G has a (0, f)-factorization
orthogonal to H.
Ma and Bai [13] showed the existence of orthogonal [0, k;]™ ,-factorizations
in [0,k; + ko2 + -+ + ky — m + 1]-graphs.
Theorem 2.1.7  ([13]) Let G be a graph, ki, ko, - ,k, be positive
integers. If G is a [0,k; + ko + - -+ + k;, — m + 1]-graph, H is a path of m
edges in G or a cycle of m edges in G, then G has a [0, k;| ,-factorization

orthogonal to H.
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Ma and Xu [14] put forward a new result on orthogonal [0, k;]7 ,-factoriza-
tions in [0, ky + k2 + - - - + k;, — m + 1]-graphs.

Theorem 2.1.8  ([14]) Let G be a graph, ki, ks,--- ,kn be positive
integers. If G is a [0, k; + ko + - - - + k, — m+ 1]-graph, H is a [1, 2]-subgraph

of m edges in G, then G has a [0, k;|" ,-factorization orthogonal to H.

Feng and Liu [15] verified that a [0, ky + k2 + - - - + Ky — m + 1]-graph G
has a [0, k;|* ,-factorization orthogonal to an arbitrary subgraph of G with
m edges. Ma, Xu and Gao [16] verified the same result.

Theorem 2.1.9  ([15, 16]) Let G be a [0,ky + ka + -+« + kyp — m + 1]-
graph, where m > 1 is an integer and ki, ks, , k,, are positive integers.
Let H be an arbitrary subgraph of G with m edges. Then G has a [0, k;]I",-

factorization orthogonal to H.

_ Yan and Pan [17] studied orthogonal factorizations in (mg+k, mf — k)-
graphs, and posed the following result.

Theorem 2.1.10  ([17]) Let G be an (mg+ k, mf — k)-graph, and H a
subgraph of G with k edges, where 1 < k < m , g and f be two integer-valued
functions defined on V(G) with g(z) > 1 or f(z) > 5 for any z € V(QG). |
Then there exists a subgraph R of G such that R has a (g, f)-factorization
orthogonal to H.

Li, Chen and Yu [18], Dai, Xie and Yu [19] improved Theorem 2.1.10,
and got the following result on orthogonal factorizations in (mg+k, mf —k)-

graphs.

Theorem 2.1.11  ([18, 19]) Let G be an (mg + k, mf — k)-graph, and
H a subgraph of G with k edges, where 1 < k < m, g and f be two integer-
valued functions defined on V(G) with 0 < g(z) < f(x) for every z € V(G).
Then there exists a subgraph R of G such that R has a (g, f)-factorization
orthogonal to H.
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Wang [20] improved Theorem 2.1.11, and presented orthogonal (g, f)-
factorizations in (mg + k — 1,mf — k + 1)-graphs. Furthermore, Wang [20]
put forward a conjecture.

Theorem 2.1.12  ([20]) Let G be an (mg + k — 1, mf — k + 1)-graph,
.1 <k <m,gand f be two integer-valued functions defined on V(G) with
0 < g(z) < f(z) for every z € V(G), g(z) and f(z) be even. If H is an
arbitrary subgraph of G with k edges, then there exists a subgraph R of G
such that R has a (g, f)-factorization orthogonal to H.

Conjecture 2.1.1  ([20]) Let G be an (mg + k — 1,mf — k + 1)-graph,
k < m, g and f be two integer-valued functions defined on V(G) with
g9(z) < f(z) for every z € V(G). If H is an arbitrary subgraph of

with k& edges, then there exists a subgraph R of G such that R has a
(g, f)-factorization orthogonal to H.

Zhou [21] justified that the conjecture above is true for an (mg + k —
1,mf — k + 1)-graph, which is shown in the following.

Theorem 2.1.13  ([21]) Let G be an (mg+k — 1,mf — k + 1)-graph,
and H a subgraph of G with k edges, where 1 < k < m, m — k # 1 and
f(z) > g(x) > 0 for each z € V(G). Then there exists a subgraph R of G
such that R has a (g, f)-factorization orthogonal to H.

The proof of Theorem 2.1.13 relies heavily on the following lemmas.

Liu [7] got a necessary and sufficient condition for a graph to have a
(g, f)-factor containing a given edge.

Lemma 2.1.1  ([7]) Let G be a graph, g(z) and f(z) be two nonnega-
tive integer-valued functions defined on V(G) with 0 < g(m) < f(z) for each
z € V(G). Then G has a (g, f)-factor coﬁtaining any given edge e of G if
and only if

6c(S,T) 2 f(5) + da-s(T) — g(T) > &(S,T)
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for any two disjoint subsets S and T of V(G), where (S, T) is defined as
follows:

(1) e(S,T) =2, ife = uv, u,v € S;

(2) e(S,T) = 1, if there exists a neutral component C' of G — (SUT)
such that e € Eg(S,V(C));

(3) £(S,T) = 0, otherwise.

The following result was proved by Li, Chen and Yu [18].

Lemma 2.1.2  ([18]) Let G be an (mg + k,mf — k)-graph, and H a
k-subgraph of G, where 1 < k < m and f(z) > g(z) > 0 for each z € V(Q).
Then there exists a subgraph R of G such that R has a (g, f)-factorization
F = {F\,F5,--- , F}} orthogonal to H, and G — F; — F5 — --- — F} is an
((m — k)g, (m — k) f)-graph.

Zhou [21] obtained the following lemma.

Lemma 2.1.3  ([21]) Let G be an (mg, mf)-graph with m > 1 and
m # 2, where 0 < g(z) < f(x) for each z € V(G). Then G has a (g, f)-

factor containing any given edge e of G. :

Proof Obviously, the result holds for m = 1. In the following we may
assume m > 3. According to Lemma 2.1.1, it suffices to show that for any
two disjoint subsets S and 7', we have

66(S,T) = f(S) + de-s(T) — g(T) > (5, T).

Claim 1 6¢(S,T) > ™2dg_s(T) + Ldg_1(95).
Proof Since G is an (mg, mf)-graph, we have

6a(S,T) = f(S)+de-s(T)—g(T)
= f(8)+da(T) —ec(S,T) — 9(T)

- %dG(T) —g(T) + f(S)— %dc(s)

m—1

1
+ dc_s(T) + adc_T(S)



