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Preface

This book discusses Hamiltonian chaos and periodic motions to chaos in pen-
dulums. A periodically forced mathematical pendulum is one of the typical
and popular nonlinear oscillators that possess complicated and rich dynam-
ical behaviors. It seems that the periodically forced pendulum is one of the
simplest nonlinear oscillators. However, until now, a systematical study of
periodic motions to chaos cannot be completed. To know periodic motions
and chaos in the periodically forced pendulum, the perturbation method has
been adopted. Because the sinusoidal function cannot be easy to be handled
in the current mathematical tools, one used the Taylor series to expend the
sinusoidal function to the polynomial nonlinear terms, and then the tradi-
tional perturbation methods were used to obtain the periodic motions of the
approximated differential system. One always emphasized that the periodic
solutions in the original pendulum are suitable for the small variation of
equilibrium. In fact, once vector fields are modified in nonlinear dynamical
systems, the new dynamical systems cannot represent the original systems.
For example, one used the softening Duffing oscillator to approximate a pen-
dulum oscillator. Such an investigation should not be acceptable.

For a better understanding of complex motions in nonlinear dynamical
systems, one considered the periodically forced pendulum. Herein, a few ex-
amples are listed to explain how to use the pendulum oscillator for a better
understanding of chaos. Since 1960, the nonlinear dynamics of a particle in
a traveling electric field was investigated by a nonlinear pendulum. In 1972,
Zaslavsky and Chirikov discussed the stochastic (chaotic) instability of non-
linear oscillation through a periodically forced pendulum, and the resonance
overlap was discussed. In 1982, Ben-Jacob et al. used the pendulum to inves-
tigate intermittent chaos in Josephson junctions. In 1985, Kadanoff investi-
gated the route from a periodic motion to unbounded chaos by investigation
of the simple pendulum, and the Chirikov-Taylor model (or the standard
mapping model) was obtained. The scaling analysis for the onset of chaos
was completed. Gwinn and Westervelt discussed the intermittent chaos and
low frequency noise in the driven damped pendulum through the fourth-order
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Runge-Kutta method, and the attraction basin was presented. In 2006, Paula
et al. established an experimental nonlinear pendulum to investigate chaotic
motions.

It is not easy to find periodic motions to chaos in a pendulum system
even though the periodically forced pendulum is one of the simplest non-
linear systems. However, the inherent complex dynamics of the periodically
forced pendulum is much beyond our imaginations through the traditional
thought of the linear dynamical systems. Until now, we have not known com-
plex motions of pendulum yet. What are the mechanism and mathematics of
such complex motions in the pendulum? The results presented in this book
will give an alternative view of complex motions in the pendulum. In this
book, the resonance-based Hamiltonian chaos and bifurcation trees to chaos
in pendulums will be analytically and/or semi-analytically predicted for a
better understanding of resonant chaos and bifurcation trees to chaos in non-
linear dynamical systems. Hamiltonian chaos in pendulum will be discussed
through periodically and parametrically forced pendylums. The bifurcation
trees of travelable and non-travelable periodic motions to chaos will be pre-
sented through the periodically forced pendulum.

This book includes six chapters. In Chapter 1, the mechanism and criteria
of Hamiltonian chaos in stochastic and resonant layers are discussed. Chapter
2 presents Hamiltonian chaos in stochastic and resonant layers of a periodi-
cally excited pendulum. In Chapter 3, parametric chaos in the stochastic and
resonant layers of the parametrically excited pendulum are presented. The
resonant conditions cannot satisfy the traditional Mathieu equation analysis.
In Chapter 4, stability and bifurcation theory of nonlinear discrete system
are reviewed. In Chapter 5, the methodology for solutions of periodic mo-
tions in continuous dynamical systems is presented through the mapping
dynamics of discrete implicit mappings under specific truncated errors. The
discrete Fourier series of periodic motions are discussed from discrete nodes
of periodic motions, and the corresponding, approximate analytical expres-
sion can be obtained. Harmonic amplitude quantity levels can be analyzed
for periodic motions in continuous nonlinear systems. Chapter 6 discusses
the bifurcation trees of periodic motions to chaos in the periodically forced
pendulum. Through the aforementioned materials, one will better understand
resonant chaos and complicated bifurcation trees of periodic motions to chaos
in pendulums, and such materials may help one to understand resonance and
bifurcations to chaos in other nonlinear dynamical systems. I hope this book
can throw out a different point of view to look into Hamiltonian chaos and
periodic motions to chaos in nonlinear dynamies community.

Finally, I would like to appreciate my former student, Dr. Yu Guo, for
completing numerical computations in the last chapter. Herein, I thank my
wife (Sherry X. Huang) and my children (Yanyi Luo, Robin Ruo-Bing Luo,
and Robert Zong-Yuan Luo) for their understanding and support. This book
is also dedicated to my parents for their many years expectation to their son.
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This gift is too light to them but everything leaving in the book may ‘last
very long.

Albert C.J. Luo
Edwardsville, Illinois

Color plots can be found from the website: academic.hep.com.cn
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Chapter 1
Resonance and Hamlltoman Chaos

In this Chapter, nonlinear Hamiltonian chaos including stochastic and reso-
nant layers in 2-dimensional nonlinear Hamiltonian systems will be presented.
Chaos and resonance mechanism in the stochastic layer of generic separatrix
will be discussed that is formed by the primary resonance interaction in non-
linear Hamiltonians systems. However, chaos in the resonant layer of the
resonant separatrix will be presented that is formed by the sub-resonance
interaction.

1.1 Stochastic layers

In this section, stochastic layers in 2-dimensional nonlinear Hamiltonian sys-
tems will be described, and the approximate criterions for onset and destruc-
tion of the stochastic layers will be presented.

1.1.1 Definitions

Consider a 2-dimensional Hamiltonian system with a time periodically per-
turbed vector field, i.e.,

x = f(x, 1) + pglx t,w); x=(z,9)T € %2, (1.1)

where f(x, u) is an unperturbed Hamiltonian vector field on %22 and g(x, ¢, )
is a periodically perturbed vector field with period T' = 27 /2, and

f(xa u) = (fl(xa l-l), f2(x7 u’)T a‘nd g(xv t7 ﬂ') = (gl(xv t’ 77), gZ(Xa ta W)T (12)

are sufficiently smooth (C",;r > 2) and bounded on a bounded set D C
# in phase space. fi = OHo(z,y,1)/0y, fo = —OHo(w,y,1)/0n; g1 =
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OH,(z,y, 2t, =) /8y, g2 = —OH, (z,y, 2t,w)/dz. If the perturbation (or fore-
ing term) g(x,t,7) vanishes, equation (1.1) is a complete nonlinear Hamil-
tonian system x(®) = £(x(®), u). Thus, the total Hamiltonian of Eq. (1.1) can
be expressed by

H(z,y,t,p) = Ho(z,y, n) + pHy(z,y, Qt, ), (1.3)

with excitation frequency () and strength g of the perturbed Hamiltonian
H,(z,y,t,m) as well. To compare with the other approximate analysis, such
a perturbation parameter is introduced herein. The Hamiltonian of the inte-
grable system in Eq.(1.1) is Hy(z,y, ). Once the initial condition is given,
the Hamiltonian Hy(z,y, u) is invariant (i.e., Ho(z,y, n) = E), which is the
first integral manifold.

To restrict this investigation to the 2-dimensional stochastic layer, four
assumptions for Eq.(1.1) are introduced as follows:

(H1.1) The unperturbed system of Eq.(1.1) possesses a bounded, closed
separatrix go(t) with at least one hyperbolic point pg : (zh, yn)-

(H1.2) The neighborhood of go(t) for the point pg : (zh, ys) is filled with at
least three families of periodic orbits ¢, (t)(o = «, 3,7) with «, 8,7 € (0,1].

(H1.3) For the Hamiltonian energy E, of g,(t), its period T} is a differen-
tiable function of E,.

(H1.4) The perturbed system of Eq.(1.1) possesses a perturbed orbit g(t)
in the neighborhood of the unperturbed separatrix go(t).

From the aforementioned hypothesis, the phase portrait of the unper-
turbed Hamiltonian system in the vicinity of the separatrix is sketched in
Fig.1.1. The following point sets and the corresponding Hamiltonian energy
are introduced, i.e.,

Lo = {(2,9)|(z,y) € @(t),t € Z} U {po} and Ep = Ho(qo(t))  (1.4)

for the separatrix,

Lo = {(z,9)(z,y) € ¢-(t),t € Z} and E; = Ho (¢o(t)) (1.5)

for the unperturbed, o-periodic orbit and

I'={(z,y)l(z,y) € q(t),t € Z} and E = Hy (q(t)) (1.6)

for the perturbed orbit g(t).

The Hamiltonian energies in Eqgs.(1.4) and (1.5) are constant for any peri-
odic orbit of the unperturbed system but the Hamiltonian energy in Eq.(1.6)
varies with (x,y) € ¢(¢) of the perturbed system. The unperturbed Hamil-
tonian Hy(g,(t))(o = e, B,7) and Hy(qo(t)) are C"(r > 2) smooth (also see,
Luo and Han, 2001). The hypotheses (H1.2)-(H1.3) imply that 7, — oo
monotonically as ¢ — 0 (i.e., the periodic orbit g, () approaches to go(t) as
o —0).
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Fig. 1.1 The phase portrait of the unperturbed system of Eq.(1.1) near a hyperbolic
point pp and go(t) is a separatrix going through the hyperbolic point and splitting
the phase into three parts near the hyperbolic point, and the corresponding orbits
g« (t) are termed the g-orbit (o = {a, 3,7}).

The d-sets of the first integral quantity (or the energy) of the unperturbed
Eq. (1.1) in Ty (o = o, 3,7), are defined as

N{(Eo) = {Es||Es — Eo| < 8,, for small §, > 0} (1.7)
and the union of the three §-sets with Fy is

N5(E0) = |J Ni(EBo) U {Eo}. (1.8)

For some time t, there is a point x, = (z,(t),y»(t))T on the orbit g, (t)
and this point is also on the normal f(xo) = (—f2(X0), fi(x0))T of the
tangential vector of the separatrix go(t) at a point xo = (zo(t),yo(t))T, as
shown in Fig.1.2. Therefore, the distance is defined as

g0 () — qo(®)]| = max %5 (t) — x0(t)]|
= max /[zo(t) — zo()]2 + [yo(t) —wo (]2 (1.9)

tex

Lemma 1.1 For a perturbed Hamiltonian systems in Eq.(1.1) with (H5.1)—
(H5.4), for any positive € > 0, there is a positive 6, > 0(c = a, 3,7) so that
llgo(t) — qo(t)|| < € for E, € N°(Ep) at a specific time t.

Proof. For any positive € > 0 let §, = || Hp|| > 0 satisfying

|Eq — Eo| = |Ho(gs) — Ho(g0)| < ||Holl - lgo — goll < do
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a5(t), Ef
qo (t)a Ey |

a5 (), E5

Fig. 1.2 The e-neighborhood of orbit go(t). The bold solid curves represent
the separatrix go(t) and the e-neighborhood boundaries ¢S (t) are determined by

o S )!lqg(t) — qo(t)|| = e(¢ = a,B,7). The solid curves depict all orbits g.(t)

in the e-neighborhood. The energies on the boundary orbits are given through
EZ = Ho(qz(t)).

where
| Holl = i‘;g [|Ho(g0) — Ho(qo0)l/|lgo — qoll] -

Since the unperturbed Hamiltonians Hj of orbits g, and ¢y are C"-smooth
(r = 2) and 0 < ||Hp|| < oo for bounded and closed orbits. Therefore, one
obtains

g0 (t) — qo(t)[| < 6c/[|Hol| = &.
This lemma is proved. &4

The e-neighborhood of orbit gg(t) is formed by the three e-sets of I'y for
the g-orbits (¢ = a, 3,7), as shown in Fig.1.2. The bold solid curves denote
the separatrix go(¢) and the e-neighborhood boundaries, ¢ (t)(c = a, 3,7),
are determined through tEnl%)za.;co) lg5(t) — qo(t)|| = € as B = Ho(q;(t)). The

solid curves represent all the o-orbits ¢, (t) in the e-neighborhood.
The three e-sets of I'g for the o-orbits (¢ = a, 3,7) are defined by

Ls ={(=yl=,y) € ¢(t), g (t) — )| <&t € Z}. (1.10)
Furthermore, from Eq.(1.8), the unions of the e-sets with I'y are

(E) = UaFf,UFO, FiO =F§UFO. (1.11)
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s ~-layer [-layer a-layer

Fig. 1.3 A stochastic layer of Eq.(1.1) formed by the Poincaré mapping set of g(t)
in the e-neighborhood of gq(t) for ¢t € [0, 00). The separatrix separates the stochastic
layer into three sub-stochastic layers (i.e., a-layer and f-layer and v-layer).

The Poincaré map P : I'" — I'P| where the Poinaré mapping set in phase
space is

I'? = {(zn,yn)|(@n, yn) € q(t), txy =27N/Q+ 1, N =0,1,---} C T,
(1.12)
where to is the initial time. Using the above notations, a stochastic layer is
defined through the Poincaré mapping set with nonzero measure as follows:

Definition 1.1 The Poincaré mapping set I'" is termed the stochastic layer
in the e-sense if the compact dense set I'" belongs to I'§ (or I' C I'§) for
tn = 2Nw/Q2 + to(N = 0,1,---). Similarly, the Poincaré mapping subset
U, C T'¥ is the o-stochastic layer if U, C I'S, for ty = 2N/ + to.

A stochastic layer of system in Eq.(1.1) is formed through the Poincaré
mapping set of ¢(t) in the e-neighborhood for time t € [0,00), as shown
in Fig.1.3. The separation of the stochastic layer by the separatrix gives
three sub-stochastic layers shaded. The sub-layers relative to the o-orbits
(o0 = a,,7) are termed the o-stochastic layer. The more detail description
can be referred to Luo (2008).

1.1.2 Approximate criteria

The predictions of resonance in the stochastic layer of a 2-dimensional nonlin-
ear Hamiltonian system will be presented. The incremental energy technique
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will be presented first from the approximate first integral quantity increment
(or approximate energy increment). The whisker mapping will be obtained,
and the corresponding criterion will be presented. The linearization of the
whicker mapping, the improved standard mapping will be presented and the
approximate prediction of chaos onset will be given. From the exact first
integral quantity, the energy spectrum technique will be developed for a nu-
merical prediction.

(A) An Incremental Energy Method. As in Luo and Han (2001), the incre-
mental energy method will be presented for a understanding of the resonant
mechanism of chaos in the stochastic layer.

Lemma 1.2 For the dynamical system in Eq.(1.1) with (H1.1)—(H1.4), if a
point (z,y) € I'NT, for some 0 = {a,B,v}, then Hy(q(t)) = Ho(gs(t)) for
some time t.

Proof. If the perturbed orbit g(t) in the set I is intersected with an unper-
turbed orbit g, (t) in the set I, for some o € {a € [-1,0),8 € (0,1],7 €
[-1,0)} at time ¢, there is a single point (z,y) € I' N I',. Therefore, for
(z,y) € I'NT,, we have (z,y) € ¢,(¢t) and (z,y) € q(t). Thus,Ho(q(t)) =
Hy(z,y) = Ho(gs(t)), which implies that the conservative energy is equal for
the same point in phase space. This lemma is proved. |

The detailed discussion is given as follows. Because the conservative en-
ergy Hy is the first integral quantity, for the o-layer, the map describing the
changes of both energy Hj and phase ¢ for time transition from ¢; to t; + T,
in Eq.(1.1) is obtained, i.e.,

Eiy1 = E; + AH?(¢:) and @it1 = @i + Ap? (Eit), (1.13)

where E; = H(q(t;)) and ¢; = ¢(q(t;)). For a specific external frequency 2,
the initial phase is defined by ¢; = Qt;. Notice that the energy relationship
in the foregoing can be expressed through the action variable. As in Chirikov
(1979) and Lichtenberg and Lieberman (1992), the phase and energy changes,
Ayp?(E;4+1) and AH?(p;), are approximately computed by

Ag?(Eit1) ~ QT,(Eit1), and

Ta(Ei)+ti
AHU((pi) ~ p,/ [HQ,H]_]dt
ti

To(Ei)+ti
= #/ (f192 — fag1)dt, (1.14)
t;

where [-, -] represents the Poisson bracket. The energy and phase changes in
Eq.(1.14) for the system in Eq.(1.1) over one period T, of the o-orbit are
sketched in Fig.1.4. If E; = E; expresses the energy of the separatrix, equa-
tion (1.13) becomes a generalized separatrix map (or a generalized whisker
map). When the g-orbit (¢ = a, 3,7) is close to the separatrix (i.e., T, — 00),



