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Random vibration: a survey of recent developments

S. H. Crandall and W. Q. Zhu
Journal of Applied Mechanics, 1983, 50(4b): 953-962

Abstract A general overview of the problems, methods, and results achieved in random vibration since its
inception as a technical discipline nearly 30 years ago is given with pam'cuiar emphasis on developments
during the past 15 years. Research areas of current interest include development of improved probabilistic
models for sources of random excitation, development of more effective random response prediction
procedures for nonlinear systems and systems with parametric excitation, development of improved
procedures for estimating reliability of systems undergoing random vibration, and development of improved
techniques for identification of system parameters from measurements made during random vibration.

1 Introduction

Random vibration is the name given to the body of theory associated with dynamic systems
responding to random excitations. The ultimate purpose of the theory is to provide a sound basis
for improviné the reliability of structures, vehicles, and equipment that must withstand randomly
fluctuating loads. Within the general framework of random vibration theory, three principal
problems can be identified depending on whether attention is focused on the response, the
excitation, or the dynamic system. Most commonly the system and its excitation are taken to be
known and the problem is to predict statistical information about the dynamic response or the
reliability of the system. The inverse problem of characterizing the excitation where the system and
its response are known is called the measurement problem. Associated with this are the statistical
operations performed on the measurements (referred to as data processing) and the problem of

“constructing useful probabilistic models to represent the random processes and random fields
under investigation. Finally there is the diagnostic or identification problem in which information
about the dynamic system is sought based on knowledge of the random excitation and its response.

In retrospect, the first investigation of dynamic response to random excitation was Einstein's
pioneering study of Brownian motion in 1905 ([72] of [16]). The words "random vibrations" were first
used in the title of a technical paper by Lord Raleigh in 1919 ([3] of [18]) to describe an acoustical
problem equivalent to the random walk in a plane. The present usage of the term random vibration
arose in the middle 1950s in connection with three aerospace problems: buffeting of aircraft by
atmospheric turbulence, acoustic fatigue of aircraft panels due to jet noise, and the reliability of
payloads in rocket-propelled vehicles. The common factor in all three problems was the random nature
of the excitation. The procedures developed to solve these problems [1] were largely based on existing
theories of statistical mechanics, communication noise, and fluid turbulence (Wax, [184] of [16]).



Initially, most of the work was based on linear models. In the middle 1960s many investigators turned
their attention to random vibration of nonlinear systems and to problems involving random parametric
excitation. Random data processing was primarily performed by analog instruments until about 1970
when efficient digital data-processing instruments, triggered by the fast Fourier transform (FFT)
breakthrough, became available. Random vibration theory was first applied to vehicles (aerospace
vehicles, ships, trucks, trains, etc.) and then to nominally stationary structures such as tall buildings
subject to random wind and earthquake loadings, off-shore structures subject to random wave loadings,
and heat exchanger tubes subject to turbulent external flows.

During the development of random vibration theory, man& books and.survey papers have been
written. Introductions to random vibration theory are provided by Crandall and Mark [2], by Robson
[3], by Bolotin [4], and by Newland [5]. The books by Lin [6] and by Bolotin [7] give deeper and more
systematic descriptions of random vibration theory with emphasis on structural engineering. Further
discussions of particular topics in random vibration are contained in the collections edited by Crandall
[1] and in the proceedings of two IUTAM Symposiums [13, 14]. Random data processing with
engineering applications is described in some depth in the books by Bendat and Piersol [8, 9].
Theoretical treatments of stochastic differential equations and stochastic stability (closely related to
random vibration theory) are provided by Jazwinski [10], by Arnold [11], and by Khasminskii [12]. The
results of the first decade of development of random vibration theory are described in survey papers
by Crandall [15, 16]. Further developments in random vibration theory since 1966 are surveyed by
Vanmarcke [19]. Special topics reviewed include random vibration of nonlinear systems [17, 18, 20-22],
random parametric vibration [23, 24], random vibration of one and two-dimensional structures [25],
and modern spectrum analysis [26].

The present paper gives a general description of the important concepts, problems, and
methods of random vibration, and a survey of the most significant results in the field, especially
those achieved in the last 15 years. Efforts also have been made to try to indicate directions for
future work. o

2 Random Processes and Random Fields

As a technical discipline random vibration is a combination of structural dynamics and probability
theory. The key concepts from probability theory are those of random processes and random fields
which are used as models for excitation and response time histories. A random process is an infinite
population or ensemble whose samples are functions of a single variable (usually time) together with
information concerning relative probabilities of sample values. A random field [27] is a similar ensemble
whose samples are functions of more than one variable (usually time and space). In principle, random
processes and random fields can be described completely in terms of infinite sequences of joint



probability distributions of successively higher order, or in terms of infinite sequences of moment
functions or cumulant functions. In practice, it is customary to deal with very incomplete descriptions;
e.g., first and second-order probability distributions only, or with a limited number of statistical averages
based on these two distributions.

For many applications it is acceptable to assume a kind of uniformity for the random process
or random field under consideration that is expressed by the designations stationary in time and
homogeneous in space. A staﬁonafy process is one whose probability distributions across the
ensemble are invariant with respect to translations of the origin of time. Similarly a random field is
homogeneous with respect to a particular spatial coordinate if its probability distributions are
invariant with respect to translations of the origin along the axis of that coordinate.

The common statistical averages are the mean and mean square, which depend on the first-order
probability distribution, and the correlation function, which depends on the second-order probability
distribution. If f(x, ¢) is a random field, the space-time correlation function is the ensemble average
of the product f(x,, t,) f(x,, ¢,) . In general this is a function of the two locations and the two times. If
the field is stationary then the correlation no longer depends on the two times separately but only on
their difference 7=1¢,—¢, . The Fourier transform of the space-time correlation function of a stationary
field with respect to the time lag 7 is called the space-time cross-spectral density function which is a
function of the two locations and a frequency variable. When only a single time history is involved the
correlation function for a random process x(t) is the ensemble average of the product x(t,)x(t,) . This
(auto)correlation function R, depends only on the the time lag 7=t,-¢, if the process is stationary.
The Fourier transform of the correlation with respect to 7 is called the (auto)spectral density function
W, which is a function of a single frequency variable f.The mean square <x’> of the stationary

random process is given by the value of R (7) when 7 is zero or by the total area under the spectrum

<a’>=[[W(f)df (1)
The importance of the correlation and spectral density functions is because they provide average
amplitude and frequency information about the sample histories and that (i) they can be
measured with available data-processing techniques; (ii) they are closed with respect to linear
time-invariant operations in the sense that if these statistics are known for the excitation, then it is
possible to obtain the corresponding statistics for the response of a linear time-invariant dynamic
system; and (iii) they often provide adequate information about the response for making
engineering decisions concerning the severity of the vibration and the reliability of the system.
Nonstationary random processes and fields are more awkward to deal with at every step:
measurement, response prediction, and drawing conclusions about reliability. A nonstationary
process can sometimes be modeled as a stationary random process modulated by a deterministic

amplitude variation [7] or as a nonstatibnary shot noise [6]. Since the correlation function of a



nonstationary process involves two independent time arguments the ordinary spectral density
function for stationary processes loses its significance. Some of the manipulative advantages of a
spectrum can be retained by introducing a generalized spectral density defined by a double
Fourier transform [6, 8]. An evolutionary spectrum was proposed by Priestley ([28-30] of [19]) to
describe relatively slow changes of the frequency content of nonstationary processes. Two
time-dependent spectra, the physical spectrum and the instantaneous spectrum, were introduced
by Mark ([31] of [19]).

Another classification of random processes and fields can be made according to the influence
of the past on the present probability distributions. There are processes with no memory at all; i.e.,
their present distributions are totally independent of the past, and there are processes whose
present distributions are completely determined by the distributions at any single time in the past.
An important example of the former class is white noise which is a stationary random process
having uniform spectral density for all frequencies. Its correlation function is proportional to the
Dirac delta function; i.e., it has no correlation with the past, no matter how recent. Such a process
is an idealized concept that cannot be physically realized (the mean square of a white noise
process is infinite) but it is a useful model for stationary processes with short correlation times in
the same sense that ideal point loads are useful in the theory of elasticity.

A process whose present probability distribution depends on that at only one previous time is
called a Markov process. The structure of a Markov process is completely determined for all future
times by the distribution at some initial time and by a transition probability density function. The
importance of Markov processes resides in the fact that when the excitation of a dynamic system
(linear or nonlinear) is ideal white noise, the response is a Markov process, and a formal technique
exists to obtain a partial differential equation satisfied by the transition probability density
function of the process.

An important special class of random process (and fields) are the normal or Gaussian
processes. These are processes whose probability distributions of all orders are completely
determined by knowledge of the mean value for all times ¢ and knowledge of the correlation
function for all pairs of times ¢, and ¢, . The importance of normal processes is because (i) they are
closed with respect to linear time-invariant operations in the sense that if the excitation of a linear
time-invariant system is a normal process, then so is the response process, and (ii) many real
phenomena can be satis'factorily modeled by normal processes. A rationalization for the latter
statement can be based on the central limit theorem which states that when a process is the sum of
a very large number of small independent random processes it approaches a normal process as the

number of independent constituents increases without limit.



3 Sources of Random Excitation

Random loading on a dynamic system can be modeled by a random process when it is
applied at a single location or by a random field when it is applied as a distributed loading over a
given length or given area of the system. In many cases it is assumed that the excitation is
stationary and normal. This simplifies the problem of measuring the appropriate parameters to
characterize the excitation and the problem of predicting the respons;: and judging the reliability.
Similar measurements made over a range of conditions together with physically based scaling laws
sometimes provide a means for extrapolating the excitation parameters to estimate the levels of
excitation that will occur under conditions beyond the range of previous experience. This
procedure, however, has its limitations. One of the more important areas of future development of
random vibration theory is the construction of improved models for random excitations.

In many cases the excitation is clearly nonstationary over a long period of time although for short
intervals, which are still long compared to the response times of the dynamic system, the excitation
appears to be stationary. A random process (or field) of this sort is called quasi-stationary [7] and may
be described by a short-term (local) behavior and a long-term (global) behavior. For example, the
short-term béhavior of a quasi-stationary random process might be described by a spectral density
function whose parameters were slowly varying functions of time. The long-term behavior might then
be described by a joint probability distribution for the slowly varying parameters in the spectral density
function. Several proposals for quantifying quasi-stationary or quasi-homogeneous random processes
and random fields have been put forth. This is indicated in the brief descriptions of random excitations
which follow. Because of the difficulty of making extensive measurements of random fields, simplifying
assumptions are often built in to the models employed. For example, in cases of moving random loads
due to turbulent flow about a vehicle it may be assumed, as in Taylor's hypothesis, that a "frozen"
turbulence pattern is convected past the vehicle. In random fields with two space dimensions the
fluctuations in one direction may be neglected, or it may be assumed that the randomness is isotropic
so that measurements along any one direction can be used to infer the complete two-dimensional

behavior.

3.1 Atmospheric Turbulence

Gust loading due to atmospheric turbulence can be a major design load for large commercial
airplanes. It is commonly assumed that the vertical turbulent velocity component can be
represented as a quasi-stationary normal process [29]. The short-term behavior is described by a
spectral density function in which the RMS turbulent velocity is a slowly varying parameter whose
long-term behavior is described by a probability density function. The assumption that the
turbulent velocity pattern has no spanwise variation and is frozen as it is convected past the

airplane, permits calculating the gust loads and the airplane response by using appropriate



