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Preface

Curvature flows are powerful tools for solving various problems in geometry and
physics, and receive more and more attention in the last decade, starting with the
groundbreaking paper [51] of Hamilton who studied the Ricci flow, which describes
the evolution of the metric of a manifold by its Ricci curvature tensor. Huisken [55]
then cbnsidered the mean curvature flow, which describes the normal evolution of
convex hypersurface in the Euclidean space by its mean curvature vector. From the
viewpoint of partial differential equations (PDEs), one can distinguish different flows
by the type of equation used to describe them. Another way to distinguish them
arises from the viewpoint of differential geometry by dividing them into extrinsic and
intrinsic flows. For example, the Ricci flow is the most important intrinsic curvature
flow. For instance, by using the Ricci flow Grigori Pereman solved the Poincaré con-
jecture. However, the mean curvature flow perhaps is the most important extrinsic
curvature flow. The mean curvature flow, originally proposed by Mullins [81], is used
to model the formation of grain boundaries of annealed metals. One can also use
this flow to classify hypersurfaces satisfying certain curvature condition, to produce
minimal surfaces, or to derive isoperimetric inequalities. Many books deal with the
theory of mean curvature flow. 1 cite several of them for the interested readers,
which are [35,76,109] in the bibliography. In this sense, curvature flows are also
called geometric flows or geometric evolution equations. Various methods from the
caleulus of variations, geometric measure theory, topology and functional analysis
enable us to treat the problems involving curvature flows, because these problems
arise from interactions among various fields. Therefore, not just in theories of pure
mathematics but also in applications of mathematics and other fields, geometric

flows have shown their strong vitality and great value.

This book grew up from a collection of my papers for graduate students and
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researchers interested in geometry and analysis, and I have tried to maintain that
spirit. Nevertheless, I have to say a few words about prerequisities. I assume that
the readers are familiar with basic concepts of differential geometry, in particular
submanifold geometry. In analysis I assume that the reader is familiar with the
basic facts from the theory of partial differential equations of second order. Good
references for these are [63] and [73| respectively. In the book we concentrate on
the fields of extrinsic curvature flows, which describe the evolution of surfaces in
the direction of the unit normal with a speed equal to a function of its principle
curvature in time. Since extrinsic flows are described by using extrinsic geomet-
ric quantities such as those quantities involving the principal curvature. Thus, the
manifold under consideration must be embedded (or more generally immersed) into
an ambient manifold space to make the extrinsic quantities appear. Therefore one
can investigate the extrinsic flows with various choices, such as on one codimension
and high codimension, or various ambient spaces, or the various speeds of the evo-
lution.

At some point in a book every person must ask himself the following question:
“What have I done in this book?” In this book I investigate the normal evolution of
some closed convex hypersurfaces in the Euclidean space and the hyperbolic space by
certain much broader class of nonlinear geometric flows, which is a reasonably large
class and includes many of the most commonly studied examples such as powers of
the mean curvature, Gauss curvature, elementary symmetric functions of curvature
and their ratios. More precisely, I mainly study the following four distinct curva-
ture problems which have one thing in common that curvature flows driven by the
extrinsic curvature are studied: The first class of problems is concerned with closed
convex hypersurfaces of Euclidean space evolving by functions of the mean curva-
ture, including the power mean curvature flow case; the second is concerned with
horospherical convex hypersurfaces contracting of the hyperbolic space by functions
of the mean curvature; the third is on mixed volume preserving flow by powers of ho-
mogeneous curvature functions of degree one, including a class of volume-preserving

curvature flow; the last one considers the forced mean curvature flows for submani-
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folds of high codimension in Euclidean space. It is our main purpose to have a good
understanding of the shape and structure of manifolds by the way of analysis coming
from the second partial differential equations and differential geometry. In fact, the
central results we obtained can be considered as natural extensions to some early
closed convex hypersurface theorems in Euclidean space for both the power mean

curvature flows and mixed volume preserving flows for speeds with degree one.

In the following, I will give an idea for the remainder of content of the book.
More information will be provided at the end in the introduction of each chapter,

except at the beginning of Chapter 1.

Chapter 1 sets our notations, recalls definitions, introduces some useful funda-
mental formulas and summarises some standard facts on the geometry of submani-
folds and geometry of graphs. Moreover, we briefly introduce the interior Holder

estimates.

Chapter 2 concerns the evolution of a closed hypersurface of the hyperbolic
space H™*! of constant sectional curvature k, convex by horospheres, in direction
of its inner unit normal vector, where the speed equals a positive power 3 of the
positive mean curvature. It is shown that the low exists on a finite maximal interval,
convexity by horospheres is preserved, and the hypersurfaces shrink down to a single
point of H?*! as the final time is approached.

Chapter 3 concerns closed hypersurfaces of dimension n(> 2) in the hyperbolic
space H? ! of constant sectional curvature x evolving in the direction of its normal
vector, where the speed equals a power # > 1 of the mean curvature. The main
result is that if the initial closed, weakly h-convex hypersurface would satify that
the ratio of the biggest and smallest principal curvatures everywhere is close enough
to 1, depending only on n and . Then under the flow this is maintained. There
exists a unique and smooth solution of the flow which converges to a single point
in H**! in a maximal finite time, and when rescaling appropriately, the evolving
exponential hypersurfaces converge to a unit geodesic sphere of H?1.

Chapter 4 concerns closed hypersurfaces of dimension n(> 2) in the hyperbolic

space H'*! of constant sectional curvature k evolving in the direction of its normal
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vector, where the speed is given by a power 3(> 1/m) of the mth mean curvature plus
a volume preserving term, including the case of powers of the mean curvature and
of the Gauss curvature. The main result is that if the initial hypersurface satisfies
that the ratio of the biggest and smallest principal curvatures is close enough to
1 everywhere, depending only on n, m, § and k. Then under the flow this is
maintained. There exists a unique and smooth solution of the flow for all times,
and the evolving hypersurfaces converge exponentially to a geodesic sphere of H* 1,

enclosing the same volume as the initial hypersurface.

Chapter 5 concerns the evolution of a closed convex hypersurface in R™*!, in
the direction of its inner unit normal vector, where the speed is given by a smooth
function depending only on the mean curvature, and satisfies some further restric-
tions without requiring homogeneity. It is shown that the flow exists on a finite
maximal interval, convexity is preserved and the hypersurfaces shrink down to a
single point as the final time is approached. This generalises the corresponding re-
sult of Schulze [89] for the positive power mean curvature flows to a much larger

possible class of flows by the functions depending only on the mean curvature.

Chapter 6 is dedicated to the study of the evolution of a closed hypersurface
of the hyperbolic space, convex by horospheres; in the direction of its inner unit
normal vector, where the speed equals a smooth function depending only on the mean
curvature, and satisfies some further restrictions, without requiring homogeneity. It
is shown that the flow exists on a finite maximal interval, convexity by horospheres
is preserved and the hypersurfaces shrink down to a single point as the final time is
approached. This generalises the previous result [47] for convex hypersurfaces in the
Euclidean space by the author to the setting in the hyperbolic space for the same

class of flows.

Chapter 7 considers the evolution of a closed hypersurface of dimension n(> 2)
in the Euclidean space under a mixed volume preserving flow. The speed equals
a power (= 1) of homogeneous, either convex or concave, curvature functions of
degree one plus a mixed volume preserving term, including the case of powers of the

mean curvature and of the Gauss curvature. The main result is that if the initial
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hypersurface satisfies a suitable pinching condition, there exists a unique, smooth
solution of the flow for all times, and the evolving hypersurfaces converge exponen-
tially to a round sphere, enclosing the same mixed volume as the initial hypersurface.
This generalizes the previous results for convex hypersurfaces in the Euclidean space
by McCoy [79] and Cabezas-Rivas and Sinestrari [23] to more general curvature flows
for convex hypersurfaces with similar curvature pinching condition.

Chapter 8 considers the evolution by mean curvature vector plus a forcing field
in the direction of its position vector of a closed submanifold of dimension n (> 2)
in R"*?. Suppose that mean curvature vector is nonzero everywhere and that the
full norm of the second fundamental form is bounded by a fixed multiple (depending
only on n) of the length of the mean curvature vector at every point. It is shown
that such submanifolds may contract to a point in finite time if the forcing field is
small, or exists for all time and expands to infinity if it is large enough. Moreover,
if the evolving submanifolds undergo suitable homotheties and the time parameter
is transformed appropriately into a parameter £, 0 < f < oo, it is also shown the
normalized submanifolds in any case converge smoothly to a round sphere in some
(n 4 1)-dimensional subspace of R"*? as t — co.

Summing up, this book provides a positive significance as an addition and im-
provement of the most interesting topics in present-day research on a theory of the
generalized curvature flows. I hope that these contributions can be applied to settle
problems in a number of areas of geometry. The book is, however, also written for
the benefit of the readers who have heard about some of geometric analysis before,
and would like to see the newest development so they can research independently
after studying this book. Thus, this book is supposed to be a nice textbook for
graduate students and researchers interested in differential geometry and general
relativity.

My thanks go to China Postdoctoral Science Foundation Grant (2015M582546),
the Fujian Provincial Natural Science Foundation Grants (2016J01672 and
2013J01030), and the Natural Science Foundation of China (11761080) and the open
foundation of Hubei Key Laboratory of Applied Mathematics (Hubei University) for
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supporting this work.

This book was partially written when I was a Ph.D student at Hubei University
and was a postdoctoral fellow at Sichuan University. In the two places I found a
warm hospitable and fantastic atmosphere to work.

Many people helped me. In particular I wish to thank Professor Li Guanghan for
his constant enthusiasm and for his always extremely helpful suggestion, specially
thank Professors (in alphabetical order) Guo Zhen, Li Anmin, Li Haizhong, Sheng
Li, Wu Chuanxi and Zhao Guosong for their helpful discussions on various aspects
of mathematics and many others over the last few years.

Finally, the writing of this book would have been impossible without the under-

standing and help of my wife Hui and my daughter Xiyun.

Guo Shunzi
Kunming, January 2018
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Chapter 1

Preliminary

In this chapter we review some well-known supporting materials before proving our
results. In Section 1.1 we want to give an overview of the conventions and definitions
we rely on. In Section 1.2 we provide some useful fundamental formulas and inequali-
ties, which will be needed in the later chapters. In Section 1.3 we summarize some
standard facts on the geometry of graphical submanifolds. Moreover, in Section 1.4

we briefly introduce interior Holder estimates for nonlinear PDEs.

1.1 Notations

The geometry of immersed submanifold Let M™ be a smooth, compact
oriented manifold of dimension n > 2 without boundary, (N"*?, g) be an (n + 1)-
dimensional complete Riemannian manifold, and Xy : M™ — N™*P be a smooth
immersion. The number p is called the codimension of the immersion. From now
on, use the same notation as in [21,47,55,89] in local coordinates {z'}, 1 < i < n,
near p € M™ and {y°}, 1 € o, < n+ p, near F(p) € N"*?. We can agree on the

following range of these indexes
lgivjakv"'<na 1<a7ﬁ7’73"'<n+p7 n+1</\,ﬂ,<n+1’

In this chapter, the repeated index summation follows Einstein summation conven-
tion. Asin [13,18], let T'(M x [0,T")) denote the tangent bundle of M x [0,T'). The
decomposition of the tangential bundle is expressed as T(M x [0,7T)) = T @& Rt,
where 7 = {u € T(M x [0,T))dt(u) = 0} is the tangential bundle for space.
FYTN = Upe M, Tr@p)N is the pullback bundle of M;, gr,F V are the restriction met-
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ric and pullback connection coming from a Riemannian metric § and V on F}T'N.
The tangential map Fi. : T — F}TN defines a sub-bundle of F*T'N of rank n. The
orthogonal complement of F,(H) in F*T'N is a vector bundle of rank p which we
denote by A and refer to as the (spacetime) normal bundle. The pullback metric
g(= F}g)= gij(x,t)dz' @dz’ is a metric on My, and satisfies gi; = §(Fi. (0:), Fiu(9;)).
The volume form on M, is du; = /det(g;)dz. The connection V on the tangent
bundle is given by

_ AT
Ft*(Vuv) = (VF‘_(-U,)Ft*(U)) , Yu,weT,

where T denotes the projection onto Fy,(7), and Fj,(v) denotes an arbitrary locally

smooth extension on F,(v). Connection V+ on the normal bundle is given by
_ L
iy .= (Vf} ”’v) ., YveT(N)cD(FTN),

where 1 denotes the projection onto N. Since 7,7*, F;TN, N and connections on
their tensor product space can be induced by V. In the absence of confusion, they
are unified as V. The second fundamental form A = (VFM)L EFTNQT*QT*

. . . oo 2

is a symmetric multilinear form of 7, whose local representation is A = AZW ®
, . Y
de' ® dz/. H = traceA € I'(N) denotes the mean curvature vector field of M;.

P 1
A=A- 9 ® H denotes the traceless part of second fundamental form. Yu,v € T,

we have Gauss equation
FYu(Fiav) = Fpu (Vyv) + A(u, v), (1.1.1)

and V€ € T(WV), W(u,€) = —(V,€) T gives the Weingarten map W € I'(T*@N®T),

we have Weingarten equation
FVu.€ = Ve — FL.(W(u,f)). (1.1.2)

Let E be a bundle on M;, V be a connection on F, and we define the curvature

tensor on F,
REV (u,v)0 := (VuVy = VoV — V[u,v]) o, Voel(E).

Furthermore, if E admits a metric bundle (-, ),

R®Y (u,0,u,v) == (u, R®Y (u,v)0), VYpu,o € T(E).
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we can denote the first covariant derivative of A by
ViAjx = Vi (Aji) — AuTh; — AjTh,,

where 1"; . denotes the Christoffel symbol for the induced connection on M;. Simi-
larly, we can also give the definition of the second covariant derivative of A. The
Laplace AT of a tensor T on M; is given by AT = ¢g*'V,V,T, and g* denotes the
inverse matrix of gi;. In our setting adapted to submanifold, the local expressions
for Gauss equation, Codazzi equation, and Ricei equation are displayed respectively

as follows.
Rijkt = RagsOiF0; FPOuF O F? + gag (AZAG - AG345.), (113)
ViA% — VA% = RS, ;00 F0,F8;F° — R};;0,F*, (1.1.4)

(RY)4ve = RS, sV 0iFY0;F" — g™ RG, 59eov) 0:;F" 0, F° 0, F° O F®

Aij
— ggg™ (,,ngkA;', . qu;.'kAf‘,) , (1.1.5)

where g, is a local expression for g in the local system {y*} on NV, RG.5 = 9% Repns,
and vy = v, is a local trivialization of N. Note that the Codazzi equation is
useless in dimension one (i.e. for curves) and that Ricci equation is useless for
hypersurfaces (i.e. in codimension one).

Special situations: hypersurfaces If X, : M™ — N™t! is an immersion
of a hypersurface, that is p = 1 and one can define a number of scalar curvature
quantities related to the second fundamental tensor of M. For simplicity assumes
that both M and N are orientable (otherwise the following computations are only
local). Then there exists a unique unit normal vector field ¥ € N which is called
the principle normal at p € M. Then further important quantities are the second
fundamental form A(p) = {hi;} and the Weingarten map # = {g**hy;} = {h}} as
a symmetric operator and a self-adjoint operator respectively. The real eigenvalues
Ai(p) € -+ € Au(p) of # are called the principal curvatures of X (M™) at X (p).
The scalar mean curvature is given by

Hi=tr,# = hi = Zn:)\,-,

i=1



4 Chapter 1  Preliminary
the square of the norm of the second fundamental form by
2 i ; "
|A|” = trg(#'W) = hih] = hhy; = N,
=1
and the Gauss-Kronecker curvature by

K := det(#) = det{h}} = % =TI >
B i=1

More generally, the mixed mean curvatures F,,1 < r < n, are given by the elemen-
tary symmetric functions of the \;
1
E.(\) = Z /\il"')\uZH Z Xij -+ A, for A=(A,-++,An) €R,
1< €Ki < i1, ir
and their quotients are

Er(\)
E’r—l (A) ,

where Fyp = 1,and E; =0, ifr >n, I, :={A € R"|E; > 0,i=1,--- ,r}. Denote the

Q-(A) = for A € T'y_q,

sum of all terms in E,(A) not containing the factor A\; by E,.;(\). Tt is clear that H,
K, E,,, Q., may be viewed as functions of A, or as functions of A, or as functions
of #, or also as functions of space and time on M;. We sum over repeated indices
from 1 to n unless otherwise indicated. In computations on the hypersurface M;,
raised indices indicate contraction with the metric.

When the codimension is one, the local expressions for Gauss equation, and

Codazzi equation become change respectively as follows:
Rijkl = Raﬁ’yéaiFaajFﬁakaalFJ =h h,’khjl - highjk, (1.1.6)
Vihji — Vjihix = R§. 50e/° 0, F0; F® — R}, ,0,F. (1.1.7)

Note that since the codimension is one, we do not have a Ricci equation in this

case.

1.2 Some useful properties

The following identities for E, and the properties on the quotients @), were proved

by Huisken and Sinestrari in [61].



