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Preface

In February of 2007, I converted my “What'’s new” web page of research
updates into a blog at terrytao.wordpress.com. This blog has since grown
and evolved to cover a wide variety of mathematical topics, ranging from my
own research updates, to lectures and guest posts by other mathematicians,
to open problems, to class lecture notes, to expository articles at both basic
and advanced levels.

With the encouragement of my blog readers, and also of the American
Mathematical Society, I published many of the mathematical articles from
the first two years of the blog as [Ta2008] and [Ta2009], which will hence-
forth be referred to as Structure and Randomness and Poincaré’s Legacies
Vols. I, IT throughout this book. This gave me the opportunity to improve
and update these articles to a publishable (and citeable) standard, and also
to record some of the substantive feedback I had received on these articles
by the readers of the blog.

The current text contains many (though not all) of the posts for the third
year (2009) of the blog, focusing primarily on those posts of a mathematical
nature which were not contributed primarily by other authors, and which
are not published elsewhere. It has been split into two volumes.

The first volume (referred to henceforth as Volume 1) consisted primarily
of lecture notes from my graduate courses on real analysis that I taught at
UCLA. The current volume consists instead of sundry articles on a variety
of mathematical topics, which I have divided (somewhat arbitrarily) into
expository articles (Chapter 1) which are introductory articles on topics of
relatively broad interest, and more technical articles (Chapter 2) which are
narrower in scope and often related to one of my current research interests.

Vi



viii Preface

These can be read in any order, although they often reference each other as
well as articles from previous volumes in this series.

A remark on notation

For reasons of space, we will not be able to define every single mathematical
term that we use in this book. If a term is italicised for reasons other than
emphasis or for definition, then it denotes a standard mathematical object,
result, or concept, which can be easily looked up in any number of references.
(In the blog version of the book, many of these terms were linked to their
Wikipedia pages, or other on-line reference pages.)

I will however mention a few notational conventions that I will use
throughout. The cardinality of a finite set E will be denoted |E|. We
will use the asymptotic notation X = O(Y), X < Y, or Y > X to denote
the estimate | X| < CY for some absolute constant C' > 0. In some cases
we will need this constant C' to depend on a parameter (e.g., d), in which
case we shall indicate this dependence by subscripts, e.g., X = 04(Y) or
X <4 Y. We also sometimes use X ~Y as a synonym for X < Y < X.

In many situations there will be a large parameter n that goes off to
infinity. When that occurs, we also use the notation On—oo(X) or simply
o(X) to denote any quantity bounded in magnitude by c(n)X, where c(n)
is a function depending only on n that goes to zero as n goes to infinity. If
we need c(n) to depend on another parameter, e.g., d, we indicate this by
further subscripts, e.g., On—>oo;d(X)-

We will occasionally use the averaging notation Eiexf(z) =
lTll >_zex f(x) to denote the average value of a function f : X — C on
a nonempty finite set X.
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2 1. Expository articles

1.1. An explicitly solvable nonlinear wave equation

As is well known, the linear one-dimensional wave equation

(1‘1) —¢tt + ¢tz =0,

where ¢ : R xR — R is the unknown field (which, for simplicity, we assume
to be smooth), can be solved explicitly; indeed, the general solution to (1.1)
takes the form

(1.2) o(t,z)= f(t+z)+g(t —x)

for some arbitrary (smooth) functions f,g : R — R. (One can of course
determine f and g once one specifies enough initial data or other boundary
conditions, but this will not be the focus of this article.)

When one moves from linear wave equations to nonlinear wave equations,
then in general one does not expect to have a closed-form solution such as
(1.2). SoI was pleasantly surprised recently while playing with the nonlinear
wave equation

(1'3) _¢ﬁ + ¢mm = €¢

to discover that this equation can also be explicitly solved in closed form.
(For the reason why I was interested in this equation, see [Ta2010].)

A posteriori, I now know the reason for this explicit solvability: (1.3) is
the limiting case a = 0,b — —o0o of the more general equation

— i + ¢T1 = edH_a - e_¢+b

which (after applying the simple transformation

¢ = b;a + w(\@e%bt, \/Qe%bx))

becomes the sinh-Gordon equation

_wtt =+ ",b:r'z - Slnh(l/f)

(a close cousin of the more famous sine-Gordon equation —oy + Gpe =
sin(¢)), which is known to be completely integrable and exactly solvable.
However, I only realised this after the fact and stumbled upon the explicit
solution to (1.3) by much more classical and elementary means. 1 thought
I might share the computations here, as I found them somewhat cute, and
they seem to serve as an example of how one might go about finding explicit
solutions to PDE in general; accordingly, I will take a rather pedestrian
approach to describing the hunt for the solution, rather than presenting the
shortest or slickest route to the answer.

After the initial publishing of this post, Patrick Dorey pointed out to me
that (1.3) is extremely classical; it is known as Liouville’s equation and was
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solved by Liouville [Li1853], with essentially the same solution as presented
here.

1.1.1. Symmetries. To simplify the discussion, let us ignore all issues of
regularity, division by zero, taking square roots and logarithms of negative
numbers, etc., and proceed for now in a purely formal fashion, pretending
that all functions are smooth and lie in the domain of whatever algebraic
operations are being performed. (It is not too difficult to go back after the
fact and justify these formal computations, but I do not wish to focus on
that aspect of the problem here.)

Although not strictly necessary for solving the equation (1.3), I find it
convenient to bear in mind the various symmetries that (1.3) enjoys, as this
provides a useful “reality check” to guard against errors (e.g., arriving at a
class of solutions which is not invariant under the symmetries of the original
equation). These symmetries are also useful to normalise various special
families of solutions.

One easily sees that solutions to (1.3) are invariant under space-time
translations

(1.4) o(t,x) — ¢(t — to, z — xp)
and also space-time reflections
(1.5) o(t,x) — d(t, £x).

Being relativistic, the equation is also invariant under Lorentz transforma-
tions

t—ozx T — vt

1.6 t, ) > , .
(1.6) #(t,7) o 9, T
Finally, one has the scaling symmetry
(1.7) o(t,x) — d(At, Ax) + 2log A.

1.1.2. Solution. Henceforth, ¢ will be a solution to (1.3). In view of the
linear explicit solution (1.2), it is natural to move to null coordinates

u=t+z,v=t—zx,
thus
By = <(8y + By); By = —(B — By)
u—*2' t :L‘)a u—2 t x

and (1.3) becomes

__1s
(1.8) Puw = 46 .
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The various symmetries (1.4)—(1.7) can of course be rephrased in terms of
null coordinates in a straightforward manner. The Lorentz symmetry (1.6)
simplifies particularly nicely in null coordinates, to

(1.9) o(u,v) = d(Au, A\~ 1v).

Motivated by the general theory of stress-energy tensors of relativistic wave
equations (of which (1.3) is a very simple example), we now look at the null
energy densities ¢2,¢2. For the linear wave equation (1.1) (or equivalently
¢uy = 0), these null energy densities are transported in null directions:

(1.10) Byl = 0; Ouy = 0.
(One can also see this from the explicit solution (1.2).)

The above transport law is not quite true for the nonlinear wave equa-
tion, of course, but we can hope to get some usable substitute. Let us just
look at the first null energy ¢2 for now. By two applications of (1.10), this
density obeys the transport equation

02 = 2¢udun

and thus we have the pointwise conservation law
(¢ — 20uu) = 0,
which implies that
1 1
(1.11) — 50w+ 76, = U(u)
for some function U : R — R depending only on u. Similarly we have
1 1
—§¢vv + Z¢12) = V(U)
for some function V : R — R depending only on v.

For any fixed v, (1.11) is a nonlinear ODE in u. To solve it, we can first
look at the homogeneous ODE

1 1
(1.12) —§¢uu + z¢121 =0.

Undergraduate ODE methods (e.g., separation of variables after substituting
1 = ¢,) soon reveal that the general solution to this ODE is given by
¢(u) = —2log(u + C) + D for arbitrary constants C, D (ignoring the issue
of singularities or degeneracies for now). Equivalently, (1.12) is obeyed if
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and only if e=%/2 is linear in u. Motivated by this, we become tempted to
rewrite (1.11) in terms of ® := e~%/2, One soon realises that

1 1
u(I) = \—5Puu T 7 2 o,
Duu® = (~buu + 782)
and hence (1.11) becomes

thus @ is a null (generalised) eigenfunction of the Schrodinger operator (or
Hill operator) —@y, + U(u). If we let a(u) and b(u) be two linearly indepen-
dent solutions to the ODE

(1'14) _fuu+UfZOa
we thus have
(1.15) @ = a(u)e(v) + b(u)d(v)

for some functions ¢, d (which one easily verifies to be smooth, since ¢,a,b
are smooth and a, b are linearly independent). Meanwhile, by playing around
with the second null energy density, we have the counterpart to (1.14),

(=0p + V(v))® =0,
and hence (by linear independence of a, b) ¢, d must be solutions to the
ODE
_g'U'U + Vg = 0.
This would be a good time to pause and see whether our implications are

reversible, i.e., whether any ¢ that obeys the relation (1.15) will solve (1.3)
or (1.10). It is of course natural to first write (1.10) in terms of ®. Since

1 1 1 1
q)u - _EQbu@; (I>v - —5(;5”(1); (I)uv - (Z¢u¢v - §¢’uv)q)a

one soon sees that (1.10) is equivalent to

1
(1.16) DBy, = 2Py + 3.

If we then insert the ansatz (1.15), we soon reformulate the above equation
as

(a(u)b' () = b(u)a'(u))(c(v)d'(v) — d(v)c'(v)) = _21?

It is at this time that one should remember the classical fact that if a,u are
two solutions to the ODE (1.11), then the Wronskian ab’ — ba’ is constant;
similarly c¢d’ — dc’ is constant. Putting this all together, we see that

Theorem 1.1.1. A smooth function ¢ solves (1.3) if and only if we have
the relation (1.13) for some functions a, b, ¢, d obeying the Wronskian
conditions ab' — ba' = «, ed' — dd = [ for some constants «, 3 multiplying
to %.
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Note that one can generate solutions to the Wronskian equation ab’ —
ba' = « by a variety of means, for instance by first choosing a arbitrarily and
then rewriting the equation as (b/a)’ = «/a? to recover b. (This does not
quite work at the locations when a vanishes, but there are a variety of ways
to resolve that; as I said above, we are ignoring this issue for the purposes
of this discussion.)

This is not the only way to express solutions. Factoring a(u)d(v) (say)
from (1.13), we see that @ is the product of a solution e(v)/d(v)+b(u)/a(u) to
the linear wave equation, plus the exponential of a solution log a(u)+log d(u)
to the linear wave equation. Thus we may write ¢ = F — 2log G, where F
and G solve the linear wave equation. Inserting this back ansatz into (1.1),
we obtain

=62 + G2 /G2 = & |2

and so we see that
2(—G} + G2 _8G,G
(1.17) ¢:1Og%cl - ]

for some solution G to the free wave equation, and conversely every expres-
sion of the form (1.17) can be verified to solve (1.1) (since log 2(—G? + G2)
does indeed solve the free wave equation, thanks to (1.2)). Inserting (1.2)
into (1.17), we thus obtain the explicit solution

—8f(t+x)g'(t — x)

(f(t+z)+g(t—x))?

to (1.1), where f and g are arbitrary functions (recall that we are neglecting
issues such as whether the quotient and the logarithm are well defined).

(1.18) ¢ = log

I, for one, would not have expected the solution to take this form. But
it is instructive to check that (1.18) does at least respect all the symmetries
(1.4)-(1.7).

1.1.3. Some special solutions. If we set U = V = 0, then a,b,c,d are
linear functions, and so ® is affine linear in u, v. One also checks that the
uv term in ® cannot vanish. After translating in v and v, we end up with
the ansatz ®(u,v) = ¢1 + couv for some constants eq,cz; applying (1.16),
we see that cjc; = 1/8, and by using the scaling symmetry (1.7), we may
normalise e.g., ¢; = 8,c2 = 1, and so we arrive at the (singular) solution

1
(§+ 1% — 222"
To express this solution in the form (1.18), one can take f(u) = £ and g(v) =
v; some other choices of f, g are also possible. (Determining the extent to

which f, g are uniquely determined by ¢ in general can be established from
a closer inspection of the previous arguments; this is left as an exercise.)

(1.19) ¢ = —2log(8 + uv) = log
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We can also look at what happens when ¢ is constant in space, i.e., it
solves the ODE —¢y; = e®. It is not hard to see that U and V must be
constant in this case, leading to a, b, ¢, d which are either trigonometric or
exponential functions. This soon leads to the ansatz ® = c1e™ + coe™ for

some (possibly complex) constants ¢y, ¢z, o, thus ¢ = —2log(c1e® +coe ™).
By using the symmetries (1.4), (1.7) we can make ¢; = ¢ and specify a to
be whatever we please, thus leading to the solutions ¢ = —2log cosh ot + c3.

Applying (1.1) we see that this is a solution as long as e® = 2a?. For
instance, we may fix c3 =0 and a =1/ V2, leading to the solution

t

ok

To express this solution in the form (1.18), one can take for instance f(u) =

e"/V2 and g(v) = e~v/V2,

(1.20) ¢ = —2log cosh

One can of course push around (1.19), (1.20) by the symmetries (1.4)-
(1.7) to generate a few more special solutions.

Notes. This article first appeared at
terrytao.wordpress.com/2009/01/22.

Thanks to Jake K. for corrections.

There was some interesting discussion online regarding whether the heat
equation had a natural relativistic counterpart, and more generally whether
it was profitable to study nonrelativistic equations via relativistic approxi-
mations.

1.2. Infinite fields, finite fields, and the Ax-Grothendieck
theorem

Jean-Pierre Serre (whose papers are, of course, always worth reading) re-
cently wrote a lovely article [Se2009] in which he describes several ways
in which algebraic statements over fields of zero characteristic, such as C,
can be deduced from their positive characteristic counterparts such as Fym,
despite the fact that there is no nontrivial field homomorphism between the
two types of fields. In particular, finitary tools, including such basic con-
cepts as cardinality, can now be deployed to establish infinitary results. This
leads to some simple and elegant proofs of nontrivial algebraic results which
are not easy to establish by other means.

One deduction of this type is based on the idea that positive character-
istic fields can partially model zero characteristic fields, and it proceeds like
this: If a certain algebraic statement failed over (say) C, then there should
be a “finitary algebraic” obstruction that “witnesses” this failure over C.
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Because this obstruction is both finitary and algebraic, it must also be de-
finable in some (large) finite characteristic, thus leading to a comparable
failure over a finite characteristic field. Taking contrapositives, one obtains
the claim.

Algebra is definitely not my field of expertise, but it is interesting to
note that similar themes have also come up in my own area of additive
combinatorics (and more generally arithmetic combinatorics), because the
combinatorics of addition and multiplication on finite sets is definitely of
a “finitary algebraic” nature. For instance, a recent paper of Vu, Wood,
and Wood [VuWoWo02010] establishes a finitary “Freiman-type” homo-
morphism from (finite subsets of) the complex numbers to large finite fields
that allows them to pull back many results in arithmetic combinatorics in
finite fields (e.g., the sum-product theorem) to the complex plane; Van Vu
and I also used a similar trick in [TaVu2007] to control the singularity prop-
erty of random sign matrices by first mapping them into finite fields in which
cardinality arguments became available). And I have a particular fondness
for correspondences between finitary and infinitary mathematics; the cor-
respondence Serre discusses is slightly different from the one I discuss, for
instance in Section 1.3 of Structure and Randomness, although there seems
to be a common theme of “compactness” (or of model theory) tying these
correspondences together.

As one of his examples, Serre cites one of my favourite results in algebra,
discovered independently by Ax [Ax1968| and by Grothendieck [Gr1966]
(and then rediscovered many times since). Here is a special case of that
theorem:

Theorem 1.2.1 (Ax-Grothendieck theorem, special case). Let P : C" —
C™ be a polynomial map from a complex vector space to itself. If P is
injective, then P is bijective.

The full version of the theorem allows one to replace C™ by an algebraic
variety X over any algebraically closed field, and it allows for P to be an
morphism from the algebraic variety X to itself. But for simplicity I will
just discuss the above special case. This theorem is not at all obvious; it is
not too difficult (see Lemma 1.2.6 below) to show that the Jacobian of P is
nondegenerate, but this does not come close to solving the problem since one
would then be faced with the notorious Jacobian conjecture. Also, the claim
fails if “polynomial” is replaced by “holomorphic”, due to the existence of
Fatou-Bieberbach domains.

In this post I would like to give the proof of Theorem 1.2.1 based on
finite fields as mentioned by Serre, as well as another elegant proof of Rudin
[Rul995] that combines algebra with some elementary complex variable
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methods. (There are several other proofs of this theorem and its generalisa-
tions, for instance a topological proof by Borel [Bo1969], which I will not
discuss here.)

1.2.1. Proof via finite fields. The first observation is that the theorem
is utterly trivial in the finite field case:

Theorem 1.2.2 (Ax-Grothendieck theorem in F'). Let F' be a finite field,
and let P : F™ — F™ be a polynomial. If P is injective, then P is bijective.

Proof. Any injection from a finite set to itself is necessarily bijective. (The
hypothesis that P is a polynomial is not needed at this stage, but becomes
crucial later on.) O

Next, we pass from a finite field F to its algebraic closure F.

Theorem 1.2.3 (Ax-Grothendieck theorem in F'). Let F' be a finite field,
let F be its algebraic closure, and let P: F — F" be a polynomial. If P is
injective, then P is bijective.

Proof. Our main tool here is Hilbert’s nullstellensatz, which we interpret
here as an assertion that if an algebraic problem is insoluble, then there
exists a finitary algebraic obstruction that witnesses this lack of solution (see
also Section 1.15 of Structure and Randomness). Specifically, suppose for
contradiction that we can find a polynomial P : F' — F " which is injective
but not surjective. Injectivity of P means that the algebraic system

P(z) = P(y), z=+#y,
has no solution over the algebraically closed field F'; by the nullstellensatz,
this implies that there must exist an algebraic identity of the form

(1.21) (P(z) — P(y)  Q(z,y) = (z —y)"
for some > 1 and some polynomial Q : ' x F'' — F" that specifically

witnesses this lack of solvability. Similarly, lack of surjectivity means the
existence of an zg € F'* such that the algebraic system

Plz) = #g
has no solution over the algebraically closed field F. By another application
of the nullstellensatz, there must exist an algebraic identity of the form
(1.22) (P(z) —20) - R(z) =1
for some polynomial R : F'© — F" that specifically witnesses this lack of
solvability.

Fix @, 20, R as above, and let k be the subfield of F generated by F
and the coefficients of P, @, zp, R. Then we observe (thanks to our explicit



