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Preface

This monograph has grown from my PhD thesis at Chern Institute of Mathemat-
ics of Nankai University, a series of seminars at Northeast Normal University, and
research work at Queen’s University of Canada during 2014-2016.

The whole book consists of twelve chapters. Part [ (the first four chapters) covers
some basic concepts and facts on Lie superalgebras and related algebras, without
going into detailed proofs that could be found in [52], [26], [22] and [47]. The sec-
ond part is the core of this book. It consists of five chapters which could be viewed
as a continuation of my thesis [64]. This part contains several research topics that
my collaborators and I are interested in and a few unsolved, natural questions that
measure differences be;xiaveen ordinary algebras and superalgebras. The last part of
this book is about my recent works [19, 20, 21] which are concerned with algebraic
structures of a kind of non-associative algebras, w-Lie algebras, that appeared re-
cently in mathematical physics and geometry. I hope this book could be helpful for
the graduate students and mathematicians who are working on this subject.

I deeply appreciate my supervisors Professor Yongzheng Zhang at Northeast
Normal University, Professor Chengming Bai at Chern Institute of Mathematics and
Professor Ivan Dimitrov at Queen’s University for their patience, help and guidance.
This book is partially supported by NNSF of China (grant number: 11301061).

Northeast Normal University
Runxuan Zhang
January 2018, Changchun
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Part I

|

Preliminaries on Lie Superalgebas
and Related Algebras

In this introductory part, we present some important notions in superalgebra-
ic theory and mathematical physics: graded vector spaces, Lie superalgebras, left-
symmetric superalgebras, Hom-type superalgebras and w-Lie algebras. We also in-
troduce the background and investigate basic properties of these algebraic struc-
tures. This part consists of four chapters: graded vector spaces and Lie superalge-
bras (Chapter 1); left-symmetric superalgebras and their constructions from various
well-known algebraic structures (Chapter 2); Hom-type superalgebras (Chapter 3);
@-Lie algebras (Chapter 4).
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Chapter 1
Lie Superalgebras

1.1 Graded vector spaces and superalgebras

Let us start with some basic facts of Z;-graded vector spaces and Lie superalge-
bras, which could be found in Scheunert [52].

Convention: Let Z; = {0,1} and V = Vj; & V; be a Z-graded vector space over
a field IF. The elements of V; are called even and those of V; are called odd. If |x|
occurs in some expression, we regard x as a Zp-homogeneous element and |x| as
the Z;-degree of x. All (super) algebras or vector spaces are assumed to be finite-
dimensional and the ground field IF' has characteristic zero unless stated otherwise.

Let V and W be two Z-graded vector spaces over a field IF. The direct sum
V@ W is a Zp-graded ve,lctor space defined by

for a € Z,. The tensor product space V @ W is also a Z,-graded vector space if we

define

(Ve W)}’ = Basp=yVa ®Wﬁ

for o, B,y € Z. The even linear map 6: V®V — V@V defined by 6(x®y) =
(— l)|’”~"|_v®x for all x,y € V, is called the twist map on V. An element r e VRV
is said to be supersymmetric if it is fixed under the action of the twist map o, i.e.,
o(r) = r. For any f§ € Z», a linear map f : V — W is said to be homogeneous of
degree B if f(Va) € Wy p for all @ € Z,. The dual space V* = Hom(V, ) of V is
Z-graded with

Va :={g€V"|g(Vur1) = {0}}
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for a € Z;. As V is finite-dimensional, we have (V@ V)* = V* @ V* as vectors
spaces and we may extend the natural paring (—, =)y : V* xV — I to (—, —)yay :
(VaVv)* x(VeV)— I by

(@* b u@vyyay = (=P 1@ wy - (b*,v)y

foralla®.b* € V" and u.v e V.

Note that as vector spaces, V @V = Hom(V*,V) = BF(V x V,I) (the space of
all bilinear forms on V). Now we identify elements of V &V with linear maps from
V* to V via the natural paring on V. Given an element r € V &V, the corresponding

linear map 7, : V* — Vis defined by
W, T,(v )y = (=) @ v Pyer. (1.1)

where u*,v" € V*. We say that r is non-degenerate if T, is an invertible map. More-
over, an invertible linear map 7 : V* — V induces a non-degenerate bilinear form
P on'V defined by

By (u,v) = (T‘l(u).v)v (1.2)

forall u,v € V. We say that T is supersymmetric if Ay is supersymmetric. Note that
if re V@V is a supersymmetric element, then %7, is supersymmetric. Converse-
ly, a supersymmetric bilinear form % on V also corresponds to a supersymmetric
element in V @ V. Similarly, since W ®V* = Hom(V, W) as vector spaces. a linear
map T : V — W of Z,-graded vector spaces can be identified with the element
rr € W@V™ defined by

(w*@vrrweys = (=) w*, (1), (1.3)

where v € V and w* € W*. Thus there exists an embedding Hom(V.W) — (W @
V*) @ (W e V*) through the natural injection W @ V* < (W@ V') @ (W @& V") which
sends every w®@v* € W@ V™ to (w,0) @ (0,v*). Given a linear map T € Hom(V, W),
the dual map T* : W* — V* is defined by

7

(T*(w*), vy = (=D)L T(0))w , (1.4)

forallve Vand w* e W*.
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In what follows, we use (—,—) instead of (—,—)y to denote the natural paring
on V, unless stated otherwise.
Let A = A D Ay be a Z-graded vector space over IF. We say that A is a superal-

gebra if Ais an Elgepra (not necessarily associative) over I, and
Aa - AB (_: Aa+B

for o, B € 7.
A superalgebra A = Ay @ Aj is said to be nontrivial if A7 # {0}. The homo-
morphisms (endomorphisms, isomorphisms, automorphisms) of superalgebras are

always assumed to be homogeneous linear maps of degree zero.

1.2 Lie superalgebras

A superalgebra (g = g5 ® g7, [—, —|) is called a Lie superalgebra if
[e,y] = = (=1)MPI[y,x] (graded skew-symmetry)

and

(=1)F e, [l 4+ (= 1Py ]+ (D2, ] = O
(graded Jacobi identity)
for all homogenous elements x,y.z € g.
Let g=g5%aj bea finite-dimensional Lie superalgebra over IF'. For 8 € Z,, we
define
alg(q) := {D € Hom(a,a) | D(ay) < a6 for all HE L}
to be the set of all IF-linear maps of degree 8 on g. It is known that the finite-

dimensional Z,-graded vector space gl(a) := glz(a) @ aly(g) is a Lie superalgebra

over I' with respect to the following bracket product:
[Dg,Dy) :=Dg oDy — (—1)°#Dy 0 Dy, (1.5)

where Dg € alg(a) and Dy, € gly(a).
For 0 € Z», a homogeneous derivation of degree 0 of g is an element D € glg(g)
such that

[D(x),y] + (=1)®[x, D(y)] = D ([x.3]) (1.6)
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for all homogenous elements x,y € g. We denote by Derg(g) the space of homoge-
neous derivations of degree 6 of g. We see that Der(g) := Dery(g) @ Derj(g) is a Lie
subsuperalgebra of gl(g), called the superalgebra of derivations of g.

Let g be a Lie superalgebra over IF and V be a Z»-graded vector space over I,
We say that V is a representation of g (or a g-module) if there exists an even linear
map p : g — gl(V) such that

() =px)p () — (=)Mp(y)p(x)
for all homogenous elements x,y € g.

Example 1.1. Let g be a Lie superalgebra. Then ad : g — gl(g) (x — ad(x)) defined
by ad(x)(y) := [x,y] make g itself to be a g-module, where x,y € g. We call this
module the adjoint module of g.

Example 1.2. Let g be a Lie superalgebra and V be a g-module. Then the dual space
V* is also a g-module, called the dual module of V, if the action of g on V* is defined
by

(x- ) i= = (=)W £ (x-v),

where x € g, f € V* and v € V are homogenous.

Moreover, if V is a g-module, then there exists a Lie superalgebraic structure on

the direct sum gV of Z;-graded vector spaces defined by

[Gr, ), G v)] = (3]s p )y — (=) MPp(y)u)

for all homogenous elements x,y € g and u,v € V. In this case, g &V is called the
semidirect sum of g and V and denoted by g, V.

Let m > n > 1 be two positive integers and gl(m|n) be the space of (m+n) x
AB

cD
Ais an (mx m)-, Dis an (n x n)-, Bis an (m x n)-, C is an (n x m)-matrix. We say

(m+n) matrices. If M € gl(m|n), we divide it into four blocks: M = , where

that M has degree O (resp. -1, 1) if the nonzero coefficients of M are in A or D (resp.
C, B). If M and N have degrees ¥ and ¥, we set [M,N] = MN — (—1)" NM. This
makes al(m|n) into a Z-graded Lie superalgebra with the even part él(m) @gl(n).
The supertrace of M is str(M) = tr(A) —tr(D),

Let by be the space of diagonal matrices in gl(m|n). We set &;(h) = h; and §;(h) =
h’j for h = diag(hy,- -y, hy, -~ . h;,) € by, This defines a basis of by We define
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a bilinear form on by, by (&,&) = 5(/(,(6/-,61) = —0;; and (&,0;) = 0 for i,k =
l,»--,mand j,l=1,---,n.

We define the special linear superalgebra sl(m|n) = Ker(str) which inherits a
structure of Z-graded superalgebra from that of gl(m|n). Set by = by N sl(m|n).
We identify b}, = ;1 /Cstr, where str = Y| & — ¥} 6;. The set of positive roots
is AT = Ay UA;", with the set Aj of even positive roots and the set A" of odd

positive roots given respectively by
A(—;— = {Ei—Ekll §i<k§m}U{5j—6,|1 <j<l<n},

Af ={g-8|l<i<m1<j<n}.

Let py (resp. p)) be the half sum of ﬁositive even (resp. odd) roots, and let p =
Po—P1- We have

] m ) I n )
Po—E;(m—2t+1)8i+§j§("—zl+])51 (1.7)
23 21':1

A weight A € by, is called dominant if 2(A, a)/(a,e) > 0 for all & € AS. We
express a given weight

m n
A= 20,‘8,‘—5— Z bj&‘,
| o]

where 7" a;+ Y} b;j = 0. The above weight A is dominant if and only if all the
numbers a; —a; 1 (i=1,--- ,m—1)and bj—bj(j=1,--- ,n—1) are nonnegative
integers ([28, Section 3.1]). o

A dominant weight A is called singular with respect to o € A;‘ if (A+p,a)=0.
The degree of atypicality of A is the number atpA of odd positive roots with respect
to which A is singular. A dominant weight A is called typical if atpA = 0, atypical
if atpA > 0 and singly atypical if atpA = 1.

We denote by g the special linear superalgebra sl(m|n). Let A € b, be a dominant
weight and L(A) be the irreducible go-module with highest weight A. Set py =
0 5 a+1. We consider L(A) as a p-module (resp. a p_-module) in which g, | (resp.
g-1) acts trivially. We define two g-modules K(A ) and K ()\), called, respectively, a

Kac module and an opposite Kac module, by
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K(A)=1Ind} L(A)=U(g-))®cL(A),K(A) =Ind} L(A)=U(a)®cL(A).
(1.9)

The Kac module K(A) is an irreducible g-module if and only if the highest
weight A is typical ([38, Theorem 1]). In case the Kac module is not irreducible, it
contains a maximal submodule /(A) and the quotient module V(A) = K(A)/I(A)
is an irreducible module. The fundamental results concerning the representations of
g are the following [38, Proposition 2.2]: 1) let A be a dominant weight, then any fi-
nite dimensional irreducible representation of g is of the form V(A) = K(A)/I(A);
2) two g-modules V(A,) and V(Az) are equivalent if and only if A} = As.

Any irreducible module V(A) is the unique irreducible quotient of a unique op-
posite Kac module K(A’). We denote by T~ A the highest weight of socK(A) and
T+ A the highest weight of socK(A'). The following proposition is taken from [28,
Proposition 6.1.2].

Proposition 1.1. Ler A, @ € bl| be dominant weights.

(1) If A is typical, then

C ifA =9,
Ext! (V(A),V(®)) = ifA = (1.10)
0 otherwise.
(2) If A is singly atypical, then
Lifd TA T AL,
Ext! (V(A), V(@) = {C TPETAT A} (L11)
0 otherwise.

The classical result due to Kac [37] states that all finite-dimensional simple Lie
superalgebras over an algebraically closed field of characteristic zero that are not

Lie algebras consist of the following classical and Cartan Lie superalgebras:

classical : A(m,n),n >m > 0;A(n,n),n > 1;B(m,n),m > 0,n > 1;C(n),n > 3;
D(m.n),m> 20> 1:D(2, ;) #0,— 1 F(4): G(3); P(n),n > 2:
O(n),n>2;

Cartan : W(n),n > 3;5(n),n > 4:8(n),n > 4,n even;H(n),n > 5. L

Note that D(2,1; o) and D(2, 1; 8) are isomorphic if and only if & and f lie in
the same orbit of the group V of order 6 generated by a +— —1 —a, a +— 1 /a.
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Left-symmetric Superalgebras

.\‘

2.1 Background

Left-symmetric algebras (or under other names like pre-Lie algebras, Koszul-
Vinberg algebras, quasi-associative algebras) are a class of Lie-admissible algebras
whose commutators are Lie algebras. They are not associative in general. They ap-
peared in the work of Cayley as a kind of rooted tree algebras in 1896 ([14]). They
arose again from the study of convex homogenous cones, affine manifolds and affine
structures on Lie groups and the cohomology theory of associative algebras in 1960s
([54. 39, 29]). Moreover, left-symmetric algebras appeared in many fields of mathe-
matics and mathematical physics. They are also closely related to rooted trees ([ 18]),
certain integrable systems ([9, 53]), classical and quantum Yang-Baxter equation
([25, 30, 24, 3]). The recent survey paper [ | 1] discussed the origin and applications
of left-symmetric algebras in geometry and physics in detail and the algebra theo-
ry of left-symmetric algebras such as structure theory, cohomology theory and the
classification of some simple left-symmetric algebras.

Since left-symmetric algebras are Lie-admissible algebras, a fundamental prob-
lem is to decide whether a given Lie algebra admits a left-symmetric algebra and
to give a classification of such products. This problem is important in geometry.
In fact, if G is a connected and simply connected Lie group over the field of real
numbers whose Lie algebra is g, then there is a left-invariant flat and torsion free
connection, that is, an affine structure on G if and only if g admits a left-symmetric
algebra ([39, 46]).



