Contests in Higher Mathematics: s
Miklos Schweltzer Competltmns 1962-1991 '

s E3 k¥

1962~199 14K valli - PP sase




E B FEEE

5

&

hi

IR

Contests in Higher Mathematics:
Miklos Schweitzer Competitions 1962-1991

2 e SR A AR - -

1962~1991 53425 HRER - BUSHEHRE

® [#K] ST - dime e

HARBIN INSTITUTE OF TECHNOLOGY PRESS

AN W WA e TE A
I

L



= RE R EEF 08-2017-047 S

Reprint from the English language edition:

Contests in Higher Mathematics

Miklss Schweitzer Competitions 1962—1991

edited by Gabor J. Szekely

Copyright © Springer Science+Business Media New York 1996
This work is published by Springer Nature

The registered company is Springer Science+Business Media, LLC
All Rights Reserved

This reprint has been authorised by Springer Nature for distribution in China Mainland.

BB B (CIP) ¥4

B AR 2K 1962 ~ 1991 4EKIE TalT - AR

P HE/(E) A - EREE. —MRE:RRELL

K2 AL ,2017. 8 '
ISBN 978 =7 — 5603 — 6841 —2

.0 1.0 I OFSFHE-"HEFER
BFESHYR-HEX V. Qo013

o i A B 4R CIP B 7 (2017) 565 192343 5

FRIGE XER AT

FEGE WA BhE

HERIT DEY

HIREST M/RET LA AR

f MR BEETIRE B X R AR PUiE AT 10 5 [ 4w 150006
0451 — 86414749

http ; //hitpress. hit. edu. en

M JREETH K9 BB ENRI

787mmx1092mm 1/16 EN3K 37.5 =% 700 TF |
2017 4E8 HEE 1 fL 2017 4E 8 ASE 1 WRERK]
ISBN 978 —7 — 5603 — 6841 —2

128.00 JT

M EYN DR
EY P LS 1

( ] e R A e ) 52 , oA TR BT IR )



Preface

“I had the opportunity to speak with Leo Szildrd about the
contests of the Mathematical and Physical Society, and about
the fact that the winners of these contests turned out later to
be almost identical with the set of mathematicians and
physicists who became outstanding . ..”

(J. Neumann, in a letter to L. Fejér, Berlin, Dec. 7, 1929)

The solutions to deep scientific problems rarely come to us easily. Thus, it
is important to motivate students to begin efforts on these kinds of prob-
lems. Scientific competition has proved to be an effective stimulant toward
intellectual efforts. Successful examples include the “Concours” for admis-
sion to the “Grandes Ecoles” in France, and the “Mathematical Tripos” in
Cambridge, England. At the turn of the century, mathematical contests
helped Hungary become one of the strongholds of the mathematical world.

With the revolution in 1848 and the Compromise in 1867, Hungary broke
free from many centuries of rule by the Turks and then the Hapsburgs, and
became a nation on equal footing with her neighbor, Austria. By the end
of the 19th century, Hungary entered a period of cultural and economic
progress. In 1891, Baron Lorand Edtvos, an outstanding Hungarian physi-
cist, founded the Mathematical and Physical Society. In turn, the Society
founded two journals: the Mathematical and Physical Journal in 1892 and
the Mathematical Journal for Secondary Schools in 1893. This latter jour-
nal offered a rich variety of elementary problems for high school students.
One of the first editors of the journal, Laszl6 Rétz, later became the teacher
of John Neumann and Eugene Wigner (a Nobel prize winner in physics).
In 1894, the Society introduced a mathematical competition for high school
students. Among the winners there were Lipt Fejér, Alfréd Haar, Tédor
Kérmén, Marcel Riesz, Gdbor Szeg6, Tibor Rad6, Ede Teller, and many
others who became world-famous scientists.

The success of high school competitions led the Mathematical Society to
found a college-level contest. The first contest of this kind was organized in
1949 and named after Miklés Schweitzer, a-young mathematician who died
in the Second World War. Schweitzer placed second in the High School
Contest in 1941, but the statutes of the fascist regime of that time pre-
vented his admission to college. Schweitzer Contest problems are proposed
and selected by the most prominent Hungarian mathematicians. Thus,

i



PREFACE

Schweitzer problems reflect the interest of these mathematicians and some
aspects of the mainstream of Hungarian mathematics. The universities of
Budapest, Debrecen, and Szeged have alternately been designated by the
Society Presidium to conduct-the Schweitzer Contests. The jury is cho-
sen by the mathematics departments of the universities in question from
among the mathematicians working in the host city. The jury sends out
requests to leading Hungarian mathematicians to submit problems suitable
for the contest. The list of problems selected by the jury is posted on the
bulletin boards of mathematics departments and of local branches of the
Mathematical Society (copies are available to anyone interested). Students
may use any materials available in libraries or in their homes to solve the
contest problems. In ten days the solutions are due, with the student’s
name, faculty, course, year, and university or high school recorded on the
solution set.

The Schweitzer competition is one of the most unique in the world. Win-
ners of the contests have gone on to become world-class scientists. Thus,
the Schweitzer Contests are of interest to both math historians and mathe-
maticians of all ages. They serve as reflections of Hungarian mathematical
trends and as starting points for many interesting research problems in
mathematics. The Schweitzer problems between 1949 and 1961 were previ-
ously published under the title Contests in Higher Mathematics, 1949-1961
(Akadémiai Kiad6, Budapest, 1968; Chapter 4 of this book summarizes the
mathematical work of M. Schweitzer). Our book is a continuation of that
volume.

‘We hope that this collection of Schweitzer problems will serve as a guide
for many young mathematicians and math majors. The large variety of
research-level problems may spark the interest of seasoned mathematicians
and historians of mathematics.

I wish to close by acknowledging the outstanding work of Dr. Marianna
Bolla as Managing Editor. In addition, without the constant assistance of
Dr. Dezs6 Mikl6s as Technical Editor, we could not have this book.

Bowling Green, OH Gdbor J. Székely
August 26, 1995
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1. Problems of the Contests

The letter in parentheses after the text of a problem refers to the section

in Chapter 3 containing its solution. The topics include these areas of
mathematics:

: Algebra
Combinatorics
Theory of Functions
Geometry
Measure Theory
Number Theory
Operators
Probability Theory
Sequences and Series
Topology
: Set Theory

Thus, for example, P.3 refers to problem in “Probability Theory” sec-
tion.

When available, the names of proposers are in brackets at the very end
of each problem.
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2 1. PROBLEMS OF THE CONTESTS
1962
1. Let f and g be polynomials with rational coefficients, and let F' and G

denote the sets of values of f and g at rational numbers. Prove that
F = @G holds if and only if f(z) = g(ax + b) for some suitable rational
numbers a # 0 and b. (N.1) [E. Fried]

Determine the roots of unity in the field of p-adic numbers. (A.1)
[L. Fuchs]

Let A and B be two Abelian groups, and define the sum of two homo-
morphisms 7 and x from A to B by

a(n+x) =an+ax forall a € A.

With this addition, the set of homomorphisms from A to B forms an
Abelian group H. Suppose now that A is a p-group (p a prime num-
ber). Prove that in this case H becomes a topological group under the
topology defined by taking the subgroups p*H (k = 1,2,...) as a neigh-
borhood base of 0. Prove that H is complete in this topology and that
every connected component of H consists of a single element. When is
H compact in this topology? (A.2) [L. Fuchs]

. Show that

[ @+=E0)F] (modp)

1<z<y<ezt

for every prime p =3 (mod 4). ([] is integer part.) (N.2) [J. Surdnyi]

. Let f be a finite real function of one variable. Let Df and D f be its

upper and lower derivatives, respectively, that is,

FEAR—f@K) [ o SER) = fEk)

Df(z)=limsu —
f(=) hlc-»op h+k h,k—0 h+k
k>0 k>0
h+k>0 h+k>0

Show that Df and D f are Borel-measurable functions. (M.1) [A. Cs4-
sz4r|

. Let E be a bounded subset of the real line, and let  be a system of

(nondegenerate) closed intervals such that for each z € E there exists an
I € Q with left endpoint z. Show that for every € > 0 there exist a finite
number of pairwise nonoverlapping intervals belonging to 2 that cover
E with the exception of a subset of outer measure less than . (M.2)
[J. Czipszer]

. Prove that the function

3 dz
Fil= /1 J@ - 1)1 - %22

(where the positive value of the square root is taken) is monotonically
decreasing in the interval 0 <9 < 1. (F.1) [P. Turén]
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Denote by M(r, f) the maximum modulus on the circle |z| = r of the
transcendent entire function f(z), and by M, (r, f) that of the

nth partial sum of the power series of f(z). Prove the existence of an
entire function fy(2) and a corresponding sequence of positive numbers
ry <1y < -++ — 400 such that

lim sup Mn(rm fO)

—m 0 oo,
n—o0 M("'mfo)

(F.2) [P. Turén)

. Find the minimum possible sum of lengths of edges of a prism all of

whose edges are tangent to a unit sphere. (G.1) [Miiller—Pfeiffer]
From a given triangle of unit area, we choose two points independently
with uniform distribution. The straight line connecting these points
divides the triangle, with probability one, into a triangle and a quadri-
lateral. Calculate the expected values of the areas of these two regions.
(P.1) [A. Rényi]

1963

1.

Show that the perimeter of an arbitrary planar section of a tetrahedron
is less than the perimeter of one of the faces of the tetrahedron. (G.2)
[Gy. Hajés]

. Show that the center of gravity of a convex region in the plane halves

at least three chords of the region. (G.3) [Gy. Hajos]

. Let R = R;® R5 be the direct sum of the rings R; and Rs, and let N3 be

the annihilator ideal of Ry (in R3). Prove that R; will be an ideal in ev-
ery ring R containing R as an ideal if and only if the only homomorphism
from R; to N, is the zero homomorphism. (A.3) [Gy. Pollak]

Call a polynomial positive reducible if it can be written as a product
of two nonconstant polynomials with positive real coefficients. Let f(z)
be a polynomial with f(0) # 0 such that f(z™) is positive reducible
for some natural number n. Prove that f(z) itself is positive reducible.
(A.4) [L. Rédei]

. Let H be a set of real numbers that does not consist of 0 alone and

is closed under addition. Further, let f(z) be a real-valued function
defined on H and satisfying the following conditions:

flz) < fly) fz<y and f(z+y) = f(z)+ fly) (z,y € H).

Prove that f(z) = cx on H, where c is a nonnegative number. (F.3)
[M. Hosszi, R. Borges]

. Show that if f(z) is a real-valued, continuous function on the half-line

0<z< oo, and 2
/ f(z)dz < o0,
0

then the function

o(z) = f() - 277 fo "t f(t)t
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satisfies

Awf@wz=4mﬁuwm

(F.4) [B. Székefalvi-Nagy|

Prove that for every convex function f(z) defined on the interval —1 <
z < 1 and having absolute value at most 1, there is a linear function
h(z) such that

f_ll \f(z) — h(z)|dz < 4 — V3.

(F.5) [L. Fejes-Téth]

. Let the Fourier series

20y Z(ak cos kx + by sin kz)
# k>1

of a function f(z) be absolutely convergent, and let
az+bf>af  +b2,, (k=12,...).

Show that

27
[ e+ -se-mre @>0

is uniformly bounded in A. (S.1) [K. Tandori]

. Let f(t) be a continuous function on the interval 0 < ¢t < 1, and define

the two sets of points
A= {t0):te0.1]), B ={(f5),1):te0,1]).

Show that the union of all segments A,B; is Lebesgue-measurable, and
find the minimum of its measure with respect to all functions f. (M.3)
[A. Csészér]

Select n points on a circle independently with uniform distribution. Let
P, be the probability that the center of the circle is in the interior of
the convex hull of these n points. Calculate the probabilities P; and P;.
(P.2) [A. Rényi]

1964

1.

Among all possible representations of the positive integer n as n =
Z?:x a; with positive integers k, a; < az < --- < ag, when will the
product Hf=1 a; be maximum? (C.1)

. Let p be a prime and let

lk(may)=akx+bky (kzlv"'va),
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be homogeneous linear polynomials with integral coefficients. Suppose
that for every pair (£,n) of integers, not both divisible by p, the values
Ix(€,7m), 1 < k < p?, represent every residue class mod p exactly p times.
Prove that the set of pairs {(ak,bx) : 1 < k < p?} is identical mod p
with the set {(m,n):0 <m,n <p-1}. (N.3)

. Prove that the intersection of all maximal left ideals of a ring is a (two-

sided) ideal. (A.5)

Let A;, Ag, ..., A, be the vertices of a closed convex n-gon K numbered
consecutively. Show that at least n — 3 vertices A; have the property
that the reflection of A; with respect to the midpoint of 4;_;A4;; is
contained in K. (Indices are meant mod n.) (G.4)

Is it true that on any surface homeomorphic to an open disc there exist
two congruent curves homeomorphic to a circle? (G.5)

. Let y;(z) be an arbitrary, continuous, positive function on [0, A], where

A is an arbitrary positive number. Let
T
i S 2[0 e ) T i

Prove that the functions y,,(z) converge to the function y = z? uniformly
on [0, A]. (S.2)

. Find all linear homogeneous differential equations with continuous eoef-

ficients (on the whole real line) such that for any solution f(t) and any
real number ¢, f(t + ¢) is also a solution. (F.6)

Let F be a closed set in the n-dimensional Euclidean space. Construct a
function that is 0 on F, positive outside F', and whose partial derivatives
all exist. (F.7) ’

Let E be the set of all real functions on I = [0, 1]. Prove that one cannot
define a topology on E in which f, — f holds if and only if f,, converges
to f almost everywhere. (S.3)

Let €;,&9,...,62, be independent random variables such that P(g; =
1) = P(g; = —1) = 1/2 for all i, and define Sy = ZLI i, 1 <k <2n.
Let N, denote the number of integers k € [2, 2n] such that either
Sk > 0, or S; =0 and Si_; > 0. Compute the variance of Na,. (P.3)

1965

1.

Let p be a prime, n a natural number, and S a set of cardinality p™. Let
P be a family of partitions of S into nonempty parts of sizes divisible
by p such that the intersection of any two parts that occur in any of the
partitions has at most one element. How large can |P| be? (N.4)

. Let R be a finite commutative ring. Prove that R has a multiplicative

identity element (1) if and only if the annihilator of R is 0 (that is,
aR=0,a€ R imply a =0). (A.6)

. Let a,bo,by,...,b,—1 be complex numbers, A a complex square matrix of

order p, and F the unit matrix of order p. Assuming that the eigenvalues
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of A are given, determine the eigenvalues of the matrix

(boE bhA bod? oo bp g A™TY \
ab,,_lA"‘l boE bhA aee bn_gA"'—2
B = abn_zA"“2 abn_lA"‘l boF § o bn_3An_3
\ abr A aby A? absdd .. WE

(0.1)

The plane is divided into domains by n straight lines in general position,
where n > 3. Determine the maximum and minimum possible number
of angular domains among them. (We say that n lines are in general
position if no two are parallel and no three are concurrent.) (G.6)

Let A= A;A2A3A4 be a tetrahedron, and suppose that for each j # k,
[Aj, Ajk] is a segment of length p extending from A; in the direction
of A;. Let p; be the intersection line of the planes [AJkAﬂA,m] and
[AxAiA,,). Show that there are infinitely many straight lines that inter-
sect the straight lines p1, ps, ps, ps4 simultaneously. (G.7)

Consider the radii of normal curvature of a surface at one of its points
P, in two conjugate directions (with respect to the Dupin indicatrix).

Show that their sum does not depend on the choice of the conjugate

directions. (We exclude the choice of asymptotic directions in the case
of a hyperbolic point.) (G.8)

Prove that any uncountable subset of the Euclidean n-space contains
an uncountable subset with the property that the distances between
different. pairs of points-are different (that is, for any ﬁoints P, # P,
and Q; # Q of this subset, P, P, = Q1Q; implies either P, = Q; and
P, = Q3, or P, = @3 and P, = @1). Show that a similar statement is
not valid if the Euclidean n-space is replaced with a (separable) Hilbert
space. (T.1)

Let the continuous functions f,(z), n = 1,2,3,..., be defined on the
interval [a, b] such that every point of [a,b] is a root of fn.(z) = fim(z)
for some n # m. Prove that there exists a subinterval of [a, b] on which
two of the functions are equal. (S.4)

. Let f be a continuous, nonconstant, real function, and assume the ex-

istence of an F such that f(z +y) = F[f(z), f(y)] for all real z and y.
Prove that f is strictly monotone. (F.8)

A gambler plays the following coin-tossing game. He can bet an arbitrary
positive amount of money. Then a fair coin is tossed, and the gambler
wins or loses the amount he bet depending on the outcome. Our gambler,
who starts playing with z forints, where 0 < z < 2C, uses the following
strategy: if at a given time his capital is y < C, he risks all of it; and
if he has y > C, he only bets 2C — y. If he has exactly 2C forints, he
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stops playing. Let f(z) be the probability that he reaches 2C (before
going bankrupt). Determine the value of f(z). (P.4)

1966

1.

Show that a segment of length A can go through or be tangent to at
most 2[h/+/2] + 2 nonoverlapping unit spheres. ([.] is integer part.)
(G.9) [L. Fejes-Té6th, A. Heppes|

. Characterize those configurations of n coplanar straight lines for which

the sum of angles between all pairs of lines is maximum. (G.10) [L. Fejes-

Téth, A. Heppes] !

Let f(n) denote the maximum possible number of right triangles deter-

mined by n coplanar points. Show that
f(n)

—~ =00 and lim Lﬂ)=0.
n—oo N2 n—oo M3

(G.11) [P. Erdés]

4. Let I be an ideal of the ring of all polynomials with integer coefficients

such that

(a) the elements of I do not have a common divisor of degree greater

than 0, and

(b) I contains a polynomial with constant term 1.

Prove that I contains the polynomial 1 +z + 2% + --- + 27! for some
natural number r. (A.7) [Gy. Szekeres|

. A “letter T” erected at point A of the z-axis in the zy-plane is the

union of a segment AB in the upper half-plane perpendicular to the z-
axis and a segment C'D containing B in its interior and parallel to the
z-axis. Show that it is impossible to erect a letter T' at every point of
the z-axis so that the union of those erected at rational points is disjoint
from the union of those erected at irrational points. (M.4) [A. Csészar]

. A sentence of the following type is often heard in Hungarian weather

reports: “Last night’s minimum temperatures took all values between
—3 degrees and +5 degrees.” Show that it would suffice to say, “Both —3
degrees and +5 degrees occurred among last night’s minimum temper-
atures.” (Assume that temperature as a two-variable function of place
and time is continuous.) (T.2) [A. Csészar]

Does there exist a function f(z, y) of two real variables that takes natural
numbers as its values and for which f(z,y) = f(y,z) impliesz =y =27
(R.1) [A. Hajnal]

. Prove that in a Euclidean ring R the quotient and remainder are always

uniquely determined if and only if R is a polynomial ring over some field
and the value of the norm is a strictly monotone function of the degree
of the polynomial. (To be precise, there are two more trivial cases: R
can also be a field or the null ring.) (A.8) [E. Fried]

ISP Jam| < 00, then what can be said about the following expres-

m=-—00
sion?
1 =

Z |am—n +em—nt1+--+ am+nl
n—oc 21+ 1 -

=—00
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(S.5) [P. Turén]
10. For a real number z in the interval (0,1) with decimal representation
0.a;(z)az(z)...an(z)...,
denote by n(z) the smallest nonnegative integer such that
On(z)+1%n(z)+2%n(z)+30%(z)+4 = 1966.
_ Determine fol n(z)dz. (abcd denotes the decimal number with digits
a,b,c,d.) (P.5) [A. Rényi]
1967
1. Let
f(z) = ag+a12+ a7 + a102"° +a112" + 0127 + ay32"° (a13 #0)
and
g(a:) =by+ bz + b2$2 + b3$3 + bnzu + bumlz + b13.'L‘13 (b3 75 0)
be polynomials over the same field. Prove that the degree of their great-
est common divisor is at most 6. (A.9) [L. Rédei]
2. Let K be a subset of a group G that is not a union of left cosets of a

4.

_proper subgroup. Prove that if G is a torsion group or if K is a finite

set, then the subset

ﬂ k1K

keK
consists of the identity alone. (A.10) [L. Rédei .

. Prove that if an infinite, noncommutative group G contains a proper

normal subgroup with a commutative factor group, then G also contains
an infinite proper normal subgroup. (A.11) [B. Csdkény]

Let a;,a3,...,an be positive real numbers whose sum equals 1. For a
natural number i, let n; denote the number of aj for which 21~ > a; >
2% holds. Prove that

[o =}
> Vn2-i <4+ /log, N.
=1

(A.12) [L. Leindler]

. Let f be a continuous function on the unit interval [0, 1]. Show that

1 1 ...
hm// f(u)dzl_,,dxn » f(%)
n—oo Jq 0 n

1 1 1
lim / f({‘/ml...zn)dxl...d:cn=f(—).
0 0

n—oo €

aud
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(P.6)

Let A be a family of proper closed subspaces of the Hilbert space H =
I? totally ordered with respect to inclusion (that is, if L;,L, € A,
then either Ly C Ly or Ly C L;). Prove that there exists a vector
z € H not contained in any of the subspaces L belonging to A. (T.3)
[B. Szbkefalvi-Nagy]

. Let U be an n x n orthogonal matrix. Prove that for any n X n matrix

A, the matrices

1
—_2: =3 Ay
Am 12 UT7AU

converge entrywise as m — oo. (0.2) [I. Kovécs]

. Suppose that a bounded subset S of the plane is a union of congru-

ent, homothetic, closed triangles. Show that the boundary of S can be
covered by a finite number of rectifiable arcs. (G.12) [L. Gehér]

. Let F be a surface of nonzero curvature that can be represented around

one of its points P by a power series and is symmetric around the normal
planes parallel to the principal directions at P. Show that the derivative
with respect to the arc length of the curvature of an arbitrary normal
section at P vanishes at P. Is it possible to replace the above symmetry
condition by a weaker one? (G.13) [A. Moér]

Let 0(Sy, k) denote the sum of the kth powers of the lengths of the sides
of the convex n-gon S, inscribed in a unit circle. Show that for any
natural number greater than 2 there exists a real number ko between 1
and 2 such that o(S,, ko) attains its maximum for the regular n-gon.
(G.14) [L. Fejes-Té6th]

1968

1.

Consider the endomorphism ring of an Abelian torsion-free (resp. tor-
sion) group G. Prove that this ring is Neumann-regular if and only if
G is a discrete direct sum of groups isomorphic to the additive group
of the rationals (resp., a discrete direct sum of cyclic groups of prime
order). (A ring R is called Neumann-regular if for every a € R there
exists a § € R such that afa = a.) (A.13) [E. Fried]

. Let a1, as,...,a, be nonnegative real numbers. Prove that

(ia.-) (ga?"‘) snﬁa,.+(n_ I)Zn:a? '

i=1 i=1 g

(S.6) [J. Surényi]

. Let K be a compact topological group, and let F' be a set of continuous

functions defined on K that has cardinality greater than continuum.
Prove that there exist g € K and f # g € F such that

f(zo) = g(z0) = max f(z) = glea;(cg(m)-

(T.4) [I. Juhész]
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. Let f be a complex-valued, completely multiplicative, arithmetical func-

tion. Assume that there exists an infinite increasing sequence Nj of
natural numbers such that -

f(n) = Ax #0 provided Ni <n < Ni+4v/Ni.

Prove that f is identically 1. (N.5) [I. Kétai]

. Let k be a positive integer, z a complex number, and ¢ < 1/2 a positive

number. Prove that the following inequality holds for infinitely many
positive integers n:

Z (n—ekg)zz > (%_e)n .
0<e< g2y
(F.9) [P. Turén]
Let % = (A;...) be an arbitrary, countable algebraic structure (that is,

2 can have an arbitrary number of finitary operations and relations).
Prove that 2 has as many as continuum automorphisms if and only if
for any finite subset A’ of A there is an automorphism 7 4 of 2 different
from the identity automorphism and such that

(:L‘)‘Ir A=

for every z € A'. (A.14) [M. Makkai]

. For every natural number r, the set of r-tuples of natural numbers is

partitioned into finitely many classes. Show that if f(r) is a function
such that f(r) > 1 and lim,_,, f(r) = +00, then there exists an infinite
set of natural numbers that, for all r, contains r-tuples from at most f(r)
classes. Show that if f(r) # +oo, then there is a family of partitions
such that no such infinite set exists. (C.2) [P. Erdés, A. Hajnal]

. Let n and k be given natural numbers, and let A be a set such that

n(n+1)-

<
T

Fori=1,2,...,n+ 1, let A; be sets of size n such that
|[AinAj| <k (i#3),

n+1

A= |JA.

§=1

Determine the cardinality of A. (C.8) [K. Corrédi]

. Let f(z) be a real function such that

lim le

z—+oo e¥
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and |f"(z)| < ¢|f'(z)| for all sufficiently large . Prove that
!
lim (@) = 1.

T—+4-00 —e-"-'_
(F.10) [P. Erdés]
Let h be a triangle of perimeter 1, and let H be a triangle of perimeter
A homothetic to h. Let hy, hg,... be translates of h such that, for all
i, h; is different from h;42 and touches H and h;+y (that is, intersects
without overlapping). For which values of A can these triangles be chosen
so that the sequence hy, hs, ... is periodic? If A > 1 is such a value, then
determine the number of different triangles in a periodic chain hq, hy, . ..
and also the number of times such a chain goes around the triangle H.
(G.15) [L. Fejes—Téth]
Let A;,..., A, be arbitrary events in a probability field. Denote by Cj
the event that at least k of Ay,..., A, occur. Prove that

ﬁ P(Cy) < ﬁ P(Ay).
k=1 k=1
(P.7) [A. Rényi|

1969
1. Let G be an infinite group generated by nilpotent normal subgroups.

Prove that every maximal Abelian normal subgroup of G is infinite.
(We call an Abelian normal subgroup maximal if it is not contained in
another Abelian normal subgroup.) (A.15) [J. Erdés|

. Let p > 7 be a prime number, { a primitive pth root of unity, ¢ ¢

rational number. Prove that in the additive group generated by the
numbers 1,¢,¢2, ¢3 4 ¢~3 there are only finitely many elements whose
norm is equal to ¢. (The norm is in the pth cyclotomic field.) (A.16)
(K. Gybry]

. Let f(z) > 0 be a nonzero, bounded, real function on an Abelian group

G, g1,...,9x are given elements of G and A;,..., A\ are real numbers.
Prove that if " :

Y Aif(gi) 20

i=1

holds for all z € G, then

k
S xzo.
i=1

(S.7) [A. Mét]

. Show that the following inequality holds for all & > 1, real numbers

ay,ag,...,ar, and positive numbers z,,23,...,Tg.
k k
E 4 E a;x;lnz;
i=1 i=1
<
In ~ 2 =

1—a;
E :xi : E z;

i=1 i=1



