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Preface

This book evolved over the past ten years from a set of lecture notes developed while
teaching the undergraduate Algorithms course at Berkeley and U.C. San Diego. Our
way of teaching this course evolved tremendously over these years in a number of
directions, partly to address our students’ background (undeveloped formal skills
outside of programming), and partly to reflect the maturing of the field in general,
as we have come to see it. The notes increasingly crystallized into a narrative, and
we progressively structured the course to emphasize the “story line” implicit in
the progression of the material. As a result, the topics were carefully selected and
clustered. No attempt was made to be encyclopedic, and this freed us to include
topics traditionally de-emphasized or omitted from most Algorithms books.

Playing on the strengths of our students (shared by most of today’s undergraduates
in Computer Science), instead of dwelling on formal proofs we distilled in each
case the crisp mathematical idea that makes the algorithm work. In other words,
we emphasized rigor over formalism. We found that our students were much more
receptive to mathematical rigor of this form. It is this progression of crisp ideas that
helps weave the story.

Once you think about Algorithms in this way, it makes sense to start at the his-
torical beginning of it all, where, in addition, the characters are familiar and the
contrasts dramatic: numbers, primality, and factoring. This is the subject of Part
I of the book, which also includes the RSA cryptosystem, and divide-and-conquer
algorithms for integer multiplication, sorting and median finding, as well as the fast
Fourier transform. There are three other parts: Part II, the most traditional section of
the book, concentrates on data structures and graphs; the contrast here is between
the intricate structure of the underlying problems and the short and crisp pieces of
pseudocode that solve them. Instructors wishing to teach a more traditional course
can simply start with Part II, which is self-contained (following the prologue), and
then-cover Part I as required. In Parts I and II we introduced certain techniques (such
as greedy and divide-and-conquer) which work for special kinds of problems; Part
III deals-with the “sledgehammers” of the trade, techniques that are powerful and
general: dynamic programming (a novel approach helps clarify this traditional stum-
bling block for students) and linear programming (a clean and intuitive treatment of
the simplex algorithm, duality, and reductions to the basic problem). The final Part
IV is about ways of dealing with hard problems: NP-completeness, various heuris-
tics, as well as quantum algorithms, perhaps the most advanced and modern topic.
As it happens, we end the story exactly where we started it, with Shor’s quantum
algorithm for factoring.



The book includes three additional undercurrents, in the form of three series of sep-
arate “boxes,” strengthening the narrative (and addressing variations in the needs
and interests of the students) while keeping the flow intact, pieces that provide
historical context; descriptions of how the explained algorithms are used in practice
(with emphasis on internet applications); and excursions for the mathematically
sophisticated.

Many of our colleagues have made crucial contributions to this book. We are grateful
for feedback from Dimitris Achlioptas, Dorit Aharanov, Mike Clancy, Jim Demmel,
Monika Henzinger, Mike Jordan, Milena Mihail, Gene Myers, Dana Randall, Satish
Rao, Tim Roughgarden, Jonathan Shewchuk, Martha Sideri, Alistair Sinclair, and
David Wagner, all of whom beta tested early drafts. Satish Rao, Leonard Schulman,
and Vijay Vazirani shaped the exposition of several key sections. Gene Myers, Satish
Rao, Luca Trevisan, Vijay Vazirani, and Lofti Zadeh provided exercises. And finally,
there are the students of UC Berkeley and, later, UC San Diego, who inspired this
project, and who have seen it through its many incarnations.
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Chapter 0
Prologue

Look around you. Computers and networks are everywhere, enabling an intricate
web of complex human activities: education, commerce, entertainment, research,
manufacturing, health management, human communication, even war. Of the two
main technological underpinnings of this amazing proliferation, one is obvious: the
breathtaking pace with which advances in microelectronics and chip design have
been bringing us faster and faster hardware.

This book tells the story of the other intellectual enterprise that is crucially fueling
the computer revolution: efficient algorithms. It is a fascinating story.

Gather ’round and listen close.

0.1 Books and algorithms

Two ideas changed the world. In 1448 in the German city of Mainz a goldsmith
named Johann Gutenberg discovered a way to print books by putting together mov-
able metallic pieces. Literacy spread, the Dark Ages ended, the human intellect was
liberated, science and technology triumphed, the Industrial Revolution happened.
Many historians say we owe all this to typography. Imagine a world in which only
an elite could read these lines! But others insist that the key development was not
typography, but algorithms.

Johann Gutenberg
1398-1468

© Corbis
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Today we are so used to writing numbers in decimal, that it is easy to forget that
Gutenberg would write the number 1448 as MCDXLVIIL. How do you add two Roman
numerals? What is MCDXLVIII + DCCCXII2 (And just try to think about multiplying
them.) Even a clever man like Gutenberg probably only knew how to add and
subtract small numbers using his fingers; for anything more complicated he had to
consult an abacus specialist.

The decimal system, invented in India around AD 600, was a revolution in quanti-
tative reasoning: using only 10 symbols, even very large numbers could be written
down compactly, and arithmetic could be done efficiently on them by following
elementary steps. Nonetheless these ideas took a long time to spread, hindered
by traditional barriers of language, distance, and ignorance. The most influential
medium of transmission turned out to be a textbook, written in Arabic in the ninth
century by a man who lived in Baghdad. Al Khwarizmi laid out the basic meth-
ods for adding, multiplying, and dividing numbers—even extracting square roots
and calculating digits of 7. These procedures were precise, unambiguous, mechan-
ical, efficient, correct—in short, they were algorithms, a term coined to honor the
wise man after the decimal system was finally adopted in Europe, many centuries
later.

Since then, this decimal positional system and its numerical algorithms have played
an enormous role in Western civilization. They enabled science and technology;
they accelerated industry and commerce. And when, much later, the computer was
finally designed, it explicitly embodied the positional system in its bits and words
and arithmetic unit. Scientists everywhere then got busy developing more and more
complex algorithms for all kinds of problems and inventing novel applications—
ultimately changing the world.

0.2 Enter Fibonacci

Al Khwarizmi’s work could not have gained a foothold in the West were it not for
the efforts of one man: the 13th century Italian mathematician Leonardo Fibonacci,
who saw the potential of the positional system and worked hard to develop it further
and propagandize it.

But today Fibonacci is most widely known for his famous sequence of numbers
0,1;1,2, 3, 558513521534, -5

each the sum of its two immediate predecessors. More formally, the Fibonacci num-
bers F, are generated by the simple rule

Foi+FEwp o ifn>1
Br= 1 i =l
0 ifn=0.
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No other sequence of numbers has been studied as extensively, or applied to more
fields: biology, demography, art, architecture, music, to name just a few. And, to-
gether with the powers of 2, it is computer science’s favorite sequence.

In fact, the Fibonacci numbers grow almost as fast as the powers of 2: for example,
F3 is over a million, and Fyy is already 21 digits long! In general, F,, & 206%" (see
Exercise 0.3).

But what is the precise value of Fio, or of Fap? Fibonacci himself would surely
have wanted to know such things. To answer, we need an algorithm for computing
the nth Fibonacci number.

Leonardo of Pisa (Fibonacci)
1170-1250

(© Corbis

An exponential algorithm
One idea is to slavishly implement the recursive definition of F,,. Here is the resulting
algorithm, in the “pseudocode” notation used throughout this book:

function fibl(n)
if n=0: return 0
if n=1% return, 1
return fibl(n—-1) + fibl(n-2)

Whenever we have an algorithm, there are three questions we always ask about it:

1. Is it correct?
2. How much time does it take, as a function of n?
3. And can we do better?

The first question is moot here, as this algorithm is precisely Fibonacci’s definition
of F,. But the second demands an answer. Let T(r) be the number of computer steps
needed to compute fib1(n); what can we say about this function? For starters, if n
is less than 2, the procedure halts almost immediately, after just a couple of steps.
Therefore,

T(m) <2 forn<1.
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For larger values of n, there are two recursive invocations of fibl, taking time
T(n— 1) and T(n— 2), respectively, plus three computer steps (checks on the value
of n and a final addition). Therefore,

Tn)=Tn-1)+TMn-2)+3 forn>1.

Compare this to the recurrence relation for F,: we immediately see that T'(n) > Fi.

This is very bad news: the running time of the algorithm grows as fast as the
Fibonacci numbers! T(n) is exponential in n, which implies that the algorithm is
impractically slow except for very small values of n.

Let’s be a little more concrete about just how bad exponential time is. To compute
Faoo, the f b1 algorithm executes T(200) > Faoo > 2'** elementary computer steps.
How long this actually takes depends, of course, on the computer used. At this time,
the fastest computer in the world is the NEC Earth Simulator, which clocks 40 trillion
steps per second. Even on this machine, f1b1(200) would take at least 2°2 seconds.
This means that, if we start the computation today, it would still be going long after
the sun turns into a red giant star.

But technology is rapidly improving—computer speeds have been doubling roughly
every 18 months, a phenomenon sometimes called Moore’s law. With this extraor-
dinary growth, perhaps fib1 will run a lot faster on next year’s machines. Let’s
see—the running time of fib1(n) is proportional to 26" ~ (1.6)", so it takes
1.6 times longer to compute Fy; than F,. And under Moore’s law, computers get
roughly 1.6 times faster each year. So if we can reasonably compute Fipo with this
year's technology, then next year we will manage Fyo. And the year after, Fip;. And
50 on: just one more Fibonacci number every year! Such is the curse of exponential
time.

In short, our naive recursive algorithm is correct but hopelessly inefficient. Can we
do better?

A polynomial algorithm
Let’s try to understand why fib1 is so slow. Figure 0.1 shows the cascade of

recursive invocations triggered by a single call to fib1(n). Notice that many com-
putations are repeated!

A more sensible scheme would store the intermediate results—the values Fo, Fy, ..
F,_1—as soon as they become known.

oy

function fib2(n)
if n=0: return 0
create an array f[0...n]
fIok=0; FK[1]H=d
i ] g e AR 2

flil] = fli—-1]1 + fli-2]
return f[n]
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Figure 0.1 The proliferation of recursive calls in fibl.
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As with fib1, the correctness of this algorithm is self-evident because it directly
uses the definition of F,. How long does it take? The inner loop consists of a single
computer step and is executed n — 1 times. Therefore the number of computer steps
used by fib2 is linear in n. From exponential we are down to polynomial, a huge
breakthrough in running time. It is now perfectly reasonable to compute Fjy or
even Fao,000."

As we will see repeatedly throughout this book, the right algorithm makes all the
difference.

More careful analysis

In our discussion so far, we have been counting the number of basic computer steps
executed by each algorithm and thinking of these basic steps as taking a constant
amount of time. This is a very useful simplification. After all, a processor’s instruc-
tion set has a variety of basic primitives—branching, storing to memory, comparing
numbers, simple arithmetic, and so on—and rather than distinguishing between
these elementary operations, it is far more convenient to lump them together into
one category. '

But looking back at our treatment of Fibonacci algorithms, we have been too liberal
with what we consider a basic step. It is reasonable to treat addition as a single
computer step if small numbers are being added, 32-bit numbers say. But the nth
Fibonacci number is about 0.694n bits long, and this can far exceed 32 as n grows.

"To better appreciate the importance of this dichotomy between exponential and polynomial algorithms,
the reader may want to peek ahead to the story of Sissa and Moore in Chapter 8.




6 Algorithms

SRk, Mk
RABR ‘BT 2R
T AHRFAERS 1M
5 (mEk. HE
M%), KFTLLA
o ek B 1 3
Ty et e
. X AT A Bk
S R 19 B 3
A,

PR A i 4 S B0k

R — Rk
R REAEN S
W MBS EsrHrtch

. Wb i

WChEg . RREHR

BLRFIRE 4 S, A7
S BRI R
. BROHEEFR—F
B 5170, 5 RN
BEXLMERN %, B
LA BB h B 2
MR,

Arithmetic operations on arbitrarily large numbers cannot possibly be performed
in a single, constant-time step. We need to audit our earlier running time estimates
and make them more honest.

We will see in Chapter 1 that the addition of two n-bit numbers takes time roughly
proportional to n; this is not too hard to understand if you think back to the grade-
school procedure for addition, which works on one digit at a time. Thus fib1l,
which performs about F; additions, actually uses a number of basic steps roughly
proportional to nF,. Likewise, the number of steps taken by fib2 is proportional
to n?, still polynomial in n and therefore exponentially superior to fib1. This cor-
rection to the running time analysis does not diminish our breakthrough.

But can we do even better than fib2? Indeed we can: see Exercise 0.4.

0.3 Big-O notation

We’ve just seen how sloppiness in the analysis of running times can lead to an
unacceptable level of inaccuracy in the result. But the opposite danger is also
present: it is possible to be too precise. An insightful analysis is based on the right
simplifications.

Expressing running time in terms of basic computer steps is already a simplifica-
tion. After all, the time taken by one such step depends crucially on the particu-
lar processor and even on details such as caching strategy (as a result of which
the running time can differ subtly from one execution to the next). Account-
ing for these architecture-specific minutiae is a nightmarishly complex task and
yields a result that does not generalize from one computer to the next. It there-
fore makes more sense to seek an uncluttered, machine-independent characteriza-
tion of an algorithm’s efficiency. To this end, we will always express running time
by counting the number of basic computer steps, as a function of the size of the
input.

And this simplification leads to another. Instead of reporting that an algorithm takes,
say, 5n° +4n + 3 steps on an input of size n, it is much simpler to leave out lower-
order terms such as 4n and 3 (which become insignificant as n grows), and even the
detail of the coefficient 5 in the leading term (computers will be five times faster in
a few years anyway), and just say that the algorithm takes time O(n®) (pronounced
“big oh of n°”).

It is time to define this notation precisely. In what follows, think of f(n) and g(n)
as the running times of two algorithms on inputs of size n.

Let f(n) and g(n) be functions from positive integers to positive reals. We say
f = O(g) (which means that “f grows no faster than g”) if there is a constant
¢ > 0 such that f(n) <c-gn).

Saying f = O(g) is a very loose analog of “ f < g.” It differs from the usual notion
of < because of the constant c, so that for instance 10n = O(n). This constant also
allows us to disregard what happens for small values of n. For example, suppose we



