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Special Notation

|X| (cardinal) number of elements in a finite set X
alb  a divides b

C set of all complex numbers

N set of all natural numbers = {integers n : n > 0}
Q set of all rational numbers

R  set of all real numbers

Z  set of all integers

GL(V) all automorphisms of a vector space V

S, symmetric group on n letters

Sx  symmetric group on a set X

Zy, = Z/nZ integers modulo n

deg(f) degree of a polynomial f(z)

1x identity function on a set X

U(R) group of units in a ring R
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H <G H is a subgroup of a group G

[G : H] index of a subgroup.H in a group G

(a)  principal ideal generated by a

H <G H is a normal subgroup of a group G

¢(n) Euler ¢-function

I <R 1Iis an ideal of a ring R

N <M N is a submodule of a module M

glb{S, T} the greatest lower bound of S and T’

lub{S, T} the least upper bound of S and T

ged(a,b) the greatest common factor of a and b

My, »(F) m-by-n matrices with entries from a field F’
Hom(R™ R™)  set of homomorphisms of R™ into R™
T(V) set of all subspaces of a vector space V

L(V,W) set of all linear transformations from V to W
L(V) set of all linear transformations on V/

iff if and only if
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Chapter 1 Rudiments

In this chapter, we briefly review some familiar materi-
als of basic set theory, mappings, relations and operations.
These materials are needed for the sequel and should be

skimmed quickly.

1.1 Sets

Sets

Any collection of objects, whose properties are “well-
defined” (that is, membership in the collection can be de-
termined by the nature of the objects without ambiguity),
is called a set. Usually we denote a set by a capital letter.
For example,

A={a,b,c,---}
A={z|r€R and z?<1}.

Any object in a given set A is called an element of A.

We write z € A if z is an element of A, and z ¢ A if z is

not an element of A.
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Two sets A and B are defined to be equal, denoted by
A = B, if they contain the same elements.

The set which contains no elements is called the empty
set, and is written as @.

Given set A and B, if every element of B is also con-
tained in A, then B is said to be itself contained in A, and
is called a subset of A, written B C A. If B C A, but
B # A, we say that B is a proper subset of A. If we wish
to emphasize that B is a proper subset, we write B C A.

The power axiom asserts that for every set A the class
P(A) of all subsets of A is itself a set.

P(4) = {S|S C A}

is called the power set of A.

Operations on Sets
Let {A;|i € I} be a family of sets indexed by (the
nonempty set) /. Its union and intersection are defined to
be respectively the sets
UAi ={z|z € A; for somei € I}
iel
and
ﬂAi ={xz|z € A; for every i € I}.
If 1 :zi, 2,---,n}, we write AyUAyU---UA, in place

of UAi and similarly for intersections. If AN B = @, A
il
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and B are said to be disjoint.

If A and B are sets, the relative complement of B in
A is the subset of A :

A—B={z|z € Aandz ¢ B}.
If all the sets under consideration are subsets of some fixed
set U (called the universal set), then U — A is denoted A“

and called simply the complement of A. Clearly, if A C B,
then A D BC€.

The Properties of Operations
(1) Idempotent law:

AUA=A, ANA= A
Involution law:
(A)° = 4;
(2) Commutative laws:
AUB=BUA, AnNB=BnNA;
Associative laws:
AU(BUC)=(AUB)UC,
AN(BNC)=(ANB)NC,
Distributive laws:
AN(BUC)=(ANB)U(ANC),
AU(BNC)=(AUB)N(AUCQC);
(3) DeMorgan'’s laws:
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(i) (AUB)® = A° N B°, (AN B)© = A° U B¢,

(i) A-(BUC)=(A—B)N(A-0C),
A—(BNC)=(A-B)Uu(A-C0C).

Partitions of a Set
Let A; C A(i = 1,2,---,n), and ;N A; = (i # j).

n

If U A; = A, we say {A;}i_12,..., is a partition of A.
i=1

Cartesian Product

Suppose that A and B are two sets, the set
Ax B={(z,y)|xr€ A and y € B}

is called the Cartesian product of A and B.

If

(a,b),(a’,V) € A x B,

we define (a,b) = (a/,¥) if and only if a = @’ and b = V'.

Example 1 The plane

R*=R xR = {(z,y) | z,y € R}.

In general, if {A;|i € I} is a family of sets indexed by
a (nonempty) set I. The cartesian product of the sets A,
is the set of all maps f: 1 — UAi such that f(i) € A; for

i€l
all 2 € I and is denoted by H A;.

i€l
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1.2 Mappings

Maps

Let A and B be sets. If there is a method f of as-
sociating a unique element of B with each element of A,
we say that f is a map, or a mapping from A into B and
denote f : A — Bor A 4, B. We represent the element
in B which is associated with a given element of A by the
notation b = f(a).

If f: A— B is a map, the set

{(a,b) € A x B|b= f(a)}

is called the graph of the map f. Given amap f: A — B,
we refer to the set A as the domain, and to the set B as
the co-domain.

The map which associates every element of a set A
with itself is called the identity map, denoted by “1, :
A— A vialg(z) ==z, forallz € A.”

Axiom of Choice

Theorem 1.2.1 For any set A, there is a mapping
¢ : P(A) — A (called the “choice function” ), such that if
S is a nonempty subset of A, then ¢(S) € S.

Example 1 Let A = {a,b}. Then the non-trivial sub-
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sets of A are A; = {a}, Ay = {b}, A3 = {a,b}. By the Ax-

iom of choice, we can define two different “choice” functions
¢1 = {(41,a), (42,b), (43, a)}

and
¢2 = {(A1,a), (A2,b), (A43,b) }.

Note Axiom of choice is equivalent to Zorn’s lemma.

Composite Maps

Given sets A, B,C, and maps f: A— B, g: B — C,
we define a composite map as

go f={(a,9(f(a)))|ac€ A}.

Theorem 1.2.2 (1) Composition is associative: if f

A—B,g:B—C and h:C — D are maps, then
ho(gof)=(hog)of.
(2)Iff:A— B, thenlgpo f= fol,=f.

Classification of Maps

Given a map f : A — B, then for each a € A, there
1s a unique b € B such that f(a) =b. If S C A, the image
of S under f (denoted f(S5)) is the set {f(s),s € S}. The
set f(A) is called the image of f and is denoted Imf. If
T C B, the inverse image of 7" under f (denoted f~'(T))
is the set

{a€ A| f(a) € T}.

The following facts can be easily verified:
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for S C A, f71(f(S)) D S;
for T c B, f(f~YT)) CT;
for any family {7} |7 € I} of subsets of B,

7 (Uﬂ-) =],

el el
7 (ﬂ :/1-) = f71(T).
i€l i€l

(1) Injection

f is called an injection if, whenever a and a’ are dis-
tinct elements of A, then f(a) # f(a’). Equivalently, f is
injective if, for every pair a,a’ € A, we have “f(a) = f(a')
implies a = a’” .

(2) Surjection

f is called a surjection if, for each b € B, there is some
a € A such that f(a) = b. Equivalently, f is surjective if
Imfi== B,

(3) Bijection

f is called a bijection if it is both injection and surjec-
tion.

There are other names for these maps. Injections are
often called monomorphisms, surjections are often called
epimorphisms, and bijections are often called one-to-one

correspondences.

Theorem 1.2.3 If f: A — B,g: B — C are both

epimorphisms, then g o f is also an epimorphism.
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Inverse Maps

A map f: A — B has an inverse if there is a map
g:B— Awithgof=14and fog=13g.

Theorem 1.2.4 (1) If f: A— Bandg: B — A
are maps such that go f = 14, then f is injective and g is
surjective.

(2) A map f : A — B has an inverse g : B — A if
and only if f is a bijection.

Proof (1) Suppose that f(a) = f(a’), apply g to
obtain g(f(a)) = g(f(d’)), that is, a = a’, and so f is
injective. For each a € A, since a = g(f(a)), we know that
there is a b = f(a) € B such that ¢g(b) = a, and so g is
surjective.

(2) If f has an inverse g, then part (1) show that f is
~both injective and surjective, and go f = 14 and fog = 1.
Assume that f is a bijection. For each b € B, there is
a € A with f(a) = b since f is surjective, and this element
is unique because f is injective. Defining ¢g(b) = a gives a
map whose domain is B, and it is plain that g is the inverse
of f. O

Note If amap f: A — B is a bijection, then it has
exactly one inverse. The inverse of f is denoted by f~!.

Example 2 Let A=R and B = R*, and let .

f:A—> B

be given by f(x) = e®. Then f is a bijection, and its inverse



