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ON THE FORCE AND MOMENT ACTING ON A
BODY IN SHEAR FLOW* D

By YUNG-HUAI KUO (California Institute of Technology)

Recently, H. S. Tsien solved the problem! of a Joukowsky airfoil in a steady, two-
dimensional flow of constant vorticity distribution. It is interesting to note that the
hydrodynamical forces can be expressed in a form similar to the well known Blasius’
theorem, involving contour integration of the complex potential function. The follow-
ing derivation of the formulae is believed to be simpler than that of Tsien.

1. Equations of motion. Let # and v be the velocity components parallel to the
x- and y-axis, respectively. In the case of two-dimensional steady motion, the Eulerian
dynamical equations are:

ou v 0y du 1 dp
#—F 9 ——gl—=—) = = ——y (1.1)

dx dx dx dy p Ox

8u+ 8v+ dv au) 1 adp (1.2)
#—+ov—+ul——) = — — — .

ay | ay 3z dy p 3y

where p is the pressure and p, the density of the fluid. The equation of continuity is

ou v
—+—=0. (1.3)
dx dy
For the type of shear flow considered by Tsien,! the vorticity is constant every-
where in the field and equal to —&. Thus

dv  du
———==% k>0 (1.4)
dx 0Jy
At the first sight, it seems that the problem might not be definite as one has four
equations for three variables. By eliminating p between Egs. (1.1) and (1.2), however,
the result can be reduced to Eq. (1.3) by means of Eq. (1.4). This shows that any solu-
tion which satisfies Egs. (1.3) and (1.4) is consistent with Egs. (1.1) and (1.2).
To simplify the problem, the solution is written in the following form:

u=ky+u, (1.5)
7 =17, (1.6)
Then Egs. (1.3) and (1.4) reduce to

ou' av’ - .7
ox  dy ’
3  ou

——=0. (1.8)
dx ay

* Received June 21, 1943.
1 H. S. Tsien, Symmetricel Joukowsks asrfoils in shear flow, Quarterly Appl. Math., 1, 129 (1943).

1) Published in Quarterly of Applied Mathematics, 1943, 1(1): 273~275
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These equations are satisfied by

o : v

w=—, v\ = —— (1.9
dy dx
or 5
a
u’=—¢: v’=—¢; (1.10)
dx dy

where ¥ and ¢ are the imaginary and real parts of the complex potential F(z); namely,

¢ + i = F(2), 2= x+ 1iy; (1.11)
and
w — i = (). (1.12)

For a given problem the function F(2) is so determined that the velocity component
normal to the contour of the body is zero.
By virtue of Egs. (1.4), (1.5), and (1.6), Egs. (1.1) and (1.2) give

p
p= = q% = pku'y + ok, (1.13)

where ¢"?=u'2+v'%, and the constant of integration is absorbed in y.
2. Force and moment. If the motion is two-dimensional and steady, the compo-
nents of the hydrodynamical force and moment? acting on the body are given by

X = —f pdy — pf u(udy — vdx), (2.1)
Y =f pdx + pf v(vdx — udy), (2.2)

M =f p(xdx + ydy) — f (= v*xdx — u?ydy + wvydx + wvxdy), (2.3)

where the contour integrals are taken along a closed curve containing the body. Using
Egs. (1.5), (1.6) and (1.13), the above equations can be written as:

= — %f [(W? — v'2)dy — 2u'v'dx] — pk [+ wy)dy — v'ydx], (2.4)

== ";_f [ — v)de + 2/v'dy] + ok @ [ — w'y)dx — o'ydy], (2.5)

M= —Re [% f zw”dz:l

+ ok @ [ — w'y)(xdx + ydy) — (v'yx — 2u'y?)dy + o'y%dx]. (2.6)

' W. F. Durand, Aerodynamic theory, vol. 2, Springer, Berlin, 1935, pp. 31-33.
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If only bodies with closed boundary are considered, no sources can exist within the
field of flow. Then the stream function ¥ is single-valued, and

f vdx =f x(v'dx — u'dy),
f vdy =f y('dx — u'dy).

From these relations, it is not difficult to deduce

p 12 o2 . ol
X = —-2—f [(u v'%)dy — 2u'v'dx], (2.7

Y = — -‘2'— f [(w'? — v'?)dx + 2u'v'dy]

+ ok @ [v'(zdx — ydy) — o'(ydx + xdy)], (2.8)
M = — Re [%-f zw"dz]
pk

[— o {(a2 — y0)dy + 22ydx} + v {(a? — y?)dx — 2xydy}]. (2.9)

These at once suggest the following alternative expressions:

X -1V = ;f w'?dz + ¢ Im [pkf 'w'zdz], (2.10)
p 1kz\?
M = — Re [—i—f Z(W’—T) dZ] (2.11)

Egs. (2.10) and (2.11) may be regarded as an extension of Blasius’ theorem. They
can be easily identified with the expressions given by Tsien.! The calculation of force
and moment, however, can be simplified to a certain extent by using these new ex-
pressions.

The writer wishes to thank Dr. H. S. Tsien for the use of his paper before publica-
tion and for his helpful discussions.

and
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THE FLOW OF A COMPRESSIBLE VISCOUS FLUID THROUGH
A STRAIGHT PIPE D

By Y. H. Kvuo
Introduction

The problem of determining a steady flow of incompressible viscous fluid
through a straight pipe of any section is easily reduced to a problem of Dirichlet.
This is the familiar Hagen-Poiseuille' flow, and a pipe of circular section is par-
ticularly well known. If, however, the fluid is compressible, the problem of
steady flow becomes much more difficult. Although the problem has been
treated experimentally’ and by the rather crude method of hydraulics,® there
does not appear to have been any previous mathematical treatment.

The method of the present paper is that of development in series in powers
of the Mach number, which is supposed to be small. The operation with
series is formal, no attempt being made to discuss the convergence.

The boundary condition of zero velocity on the wall of the tube, together with
the information regarding the pressure drop, is not sufficient to make the mathe-
matical problem definite. It is, in fact, a question of finding a solution rather
than the solution; the simplest solution is taken, as in the classical case of the
incompressible fluid, where the same partial indeterminacy also occurs.

Part T deals with a pipe of general section. The equations of motion expressed
in terms of momentum vector and specific volume are given and the process of
power series development is explained. This may, for small values of Mach
number, be regarded as a process of successive approximations.

The zero approximation is the Hagen-Poiseuille flow.

In the first approximation the flow remains parallel to the walls of the pipe,
and the determination of the velocity again reduces to a Dirichlet problem (5.3).

In the second approximation the velocity is no longer parallel to the walls.
The component of momentum parallel to the walls is a linear function of the
distance along the pipe (6.3), the determination of the coefficient of this function
again depending on Dirichlet problems (6.8), (6.9). The transverse momentum
component is proportional to ¢ in (6.13), and this is independent of distance
along the pipe; its determination is reduced to a Dirichlet problem (6.14) and a
biharmonic problem (6.15).

In the zero approximation the pressure is a linear function of distance along
the pipe (4.7), in the first approximation a quadratic function (5.8), and in the
second approximation a cubic function (6.27).

The drag and flux are considered in §7.

In Part II the pipe is of circular section and explicit solutions are given.

! Hagen, Pogg. Ann., 46, 423 (1839).
? Poiseuille, Comp. Rend. 11 and 12, (1840-1).
? Reynolds, Phil. Trans. Roy. Soc. London, 174, 935 (1883).

13

1) Published in Journal of Mathematics and Physics, 1943, 22: 13~30
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Part I. Pipe of a general section

1. The equations of motion

We shall consider a compressible viscous fluid flowing steadily through a pipe
of any constant section, under the influence of the difference between the pres-
sures applied at the ends of the pipe. It is assumed that the pipe has a well-
rounded mouth-piece so that it introduces no initial disturbances. The domain
of the mathematical theory is the interior of the pipe between two normal sec-
tions at a distance !’ apart (the “length” of the pipe); these sections are called
the “entrance” and “outlet”.

Let z: be Cartesm.n coordinates with the origin at the mean centre of the
entrance, the axis of z; lymg along the axis of the pipe; let u; be the components
of the velocxty Then in the pipe itself the motion satisfies the general equa-
tions"® of steady motion in the absence of bedy force

(L1 Puie,s = —pi + ubui + L0,

where ¢ = du;/oz;, A'(= 8*/0x;0x;) is the Laplacian operator, p’ the density,
p’ the pressure and u the viscosity, which is a function of temperature, but
within wide limits, independent of pressure. With these is associated the
equation of continuity

(1.2) ('ui),s = 0.

Here the equations are expressed in accordance with the indicial notation; the
Latin suffixes have the range 0, 1, 2, the comma indicates partial differentiation
and summation is understood for repeated suffixes. We shall assume the motion
to be either isothermal or adiabatic, so that a definite pressure density relation
exists. We shall in both cases treat u as a constant, its variations under change
of pressure being neglected in both cases and its variation under change of tem-
perature being neglected in the adiabatic case.

We now find it convenient to define a few constants which are useful in the
later calculation. Let §’ be the mean pressure over the cross-section at the
outlet, defined as

(1.3) P = L p’ dz; dz, for zo =1,
A

where A is the area of the cross-section. Let 5’ be the density corresponding to
P’ according to the pressure-density relation of the fluid. Finally, let @ be the
mean velocity over a cross-section, weighted by the density so that it is inde-
pendent of the particular section chosen, namely,

(1.4) = T'I ff p'uo dzy dz, for any .

* W. Miiller, Einfithrung in die Theorie der zihen Flissigkeiten, (Leipzig, 1932) p. 13.
* H. Lamb, Hydrodynamics, (Cambridge, 1932) p. 577.
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We shall now be able to express the equations in dimensionless form by the fol-
lowing transformation:

’

h-)

x’_ u{ ' =
(1.5) z= =2 p=PF_F o =

2m a’”’ plan £

k-1

where m is the hydraulic mean radius of the section, i.e. m = A/P where P is
the perimeter of the bounding curve C. Substituting (1.5) in (1.1) and (1.2),
we have

2
(1-6) pUs Ua,s + PUY U0 = —D,a + g Au, + 3—R 0.0
1.7 pUsUs,g -+ pUoUso = —P,o + Igi Auo + E?R- 0,0,
(1.8) (pug).s + (puo)o = O,

the Greek suffixes having the range 1, 2; here § = du;/dz;, R is the Reynolds’

number, i.e., R = 4mu’/v where » (= ;—:—,) is the mean kinematic viscosity.
The boundary conditions to be satisfied by u; are

(1.9) u; =0 on C.

These seem to be the only essential boundary conditions. As we shall see later
that, they are generally not sufficient to ensure a definite solution. We shall
make use of this partial indeterminacy to obtain analytically simple solutions,
hoping that the physical validity of such solutions may be justified in the same
way that the solutions of Saint Venant in elasticity are justified.

It is convenient to have the constancy of the flux of mass across any section
expressed in integral form; in dimensionless variables, it reads

(1.10) ff puo dzy dxy = g .

Once the velocity u: is known we can solve for p from (1.6) and (1.7). As
the differential equations involving p are of the first order there will be one arbi-
trary constant at our disposal, which will be determined by the condition at the
outlet. This is

(1.11) ffpdxld:rg =0 for zo =l == Z%

2. The pressure-density relation

The equations (1.6), (1.7) and (1.8) which involve five unknowns cannot be
solved without using a relation connecting » and p. As remarked above, we
shall suppose the change of state to be either isothermal or adiabatic. It would
appear necessary to treat the case of a gas and that of a liquid separately. How-
ever, as we shall see below, it is possible to justify a common treatment as
approximately valid from a physical point of view.
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Let M denote the Mach number; it is defined as the ratio of the mean velocity
@’ of the fluid to that of sound in the fluid, namely,

72,

(2.1) =_—,
Co
where ¢, is the velocity of sound in the fluid at the pressure P, le.
co = (dp'/dp")pmp -
Suppose we are dealing with the perfect gas under the isothermal condition,
the pressure-density relationship is Boyle’s law

e = kp, ’
where k is a constant. With this law the value of 3’ corresponding to ' is

= kp'.

Taking the difference of these two equations and converting to dimensionless
variables, we have

(2.2) p =1+ Mp.

Similarly, under the adiabatic condition the pressure-density relationship takes
the form

(2-3) Py =1+ 7Mz y

where v is the ratio of the specific heats.

For mathematical reasons, we consider only those cases in which the viscosity
x may be regarded as a constant. This is certainly the case for the isothermal
motion of a gas. It will not be accurate when the change is adiabatic, for the
temperature no longer remains constant. However in gases, air for instance,
the viscosity depends only slightly on temperature; for an increase of tempera-
ture from 0° to 20°C, the increase® in u is about 6 percent, so we can take it as
constant for small change in temperature.

In the case of a liquid, the general thermodynamic properties are rather vague
and no definite laws have ever been established. However, it is an experimental
fact that when’ water flows through a pipe, the temperature everywhere is
sensibly the same so long as the flow is laminar; and that® under a constant tem-
perature, the pressure density-relation is approximately linear for a moderate
range of pressures. Consequently, the isothermal law (2.2) will be assumed to
be valid also for liquid.

As a mathematical convenience, we may regard the equation (2.2) as a special
case of the equation (2.3), although they represent entirely different physical
processes. Hence we shall use (2.3), reducing to (2.2) when required by putting
vy = 1.

§ H. Lamb, Loc. cit.5 p. 576.

" Barnes and Coker, Proc. Roy. Soc. A 74, 341 (1904).
* P. W. Bridgman, Proc. Roy. Soc. A 48, 309 (1912); A 49, 1 (1913); A 66, 185 (1931).



