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A Geometrical Design Method
for Blade’s Surface Shape and
General Minimal Surface

1 Introduction

The applications of optimal shape design are uncountable. For systems
governed by partial differential equations, they range from structure mechanics to
electromagnetism and fluid mechanics and, more recently, to a combination of the
three. Among the applications to fluids are (a) weight reduction and aeroacoustic design
of engines, cars, airplanes, and even music instruments; (b) electromagnctically
optimal shapcs, such as in stcalth objects with acrodynamics constrains; (c) wave
cancelling in boat design; and (d) drag reduction in air and water by-static or
active mechanics. In industry, optimum design is not a once and for all solution
tool because engineering design is made of compromises owing to the
multidisciplinary aspect of the problems and the necessity of doing multi-point
constrained design.

Optimal shape design is a branch of differentiable optimization and more
precisely of optimal control distributed systems, for example, blade design is a
optimal shape control. As well known that classical minimal surface is to find a

surface spanning on a closed Jordanian curvilinear C such that

J(38) = Aug inf J(S)
SCF
where J(S) =HdS is the area of S. Turbomachinery design is driven by the need
S

for improving performance and reliability. So far we have not found a geometric
design entirely from mathematical point of view. In this paper we try to propose a

principle for a fully mathematical design of the surface of the blade in a impeller.

* Li Kaitai, Su Jian and Mei Liquan
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This principle models a general minimal surface by minimizing a functional
proposed by us. A key point in this modeling process is theoretical rationality and
the realization of our design procedure. Using a tensor analysis technique we
realize this procedure and obtain Eular-Lagrange equation for blade’s surface
which is an elliptic boundary value problem for the bland ’s surface, and prove
the existence of solution of minimal problem.

The content of paper organize as following. In section second we give main
results. In third section, we give rotating Navier-Stokes equations in the channel
in the impeller with mixed boundary condition, discuss this problem of weak and
strong solution, indicate a open problem on dependence of solution upon
geometry of blade’ s surface; In third section we establish a new coordinate
system and transform the flow domain into a fixed domain in new coordinate
syste(n; present formulation of Navier-Stokes equations in term of blade’s surface
in the new coordinate system; In section forth we establish a new principle of
geometric design of shape of blade, prove existence of solution of corresponding
optimal control problem. In section fifth we present formulation of object
functional and its gradient under new coordinate system, hence Eular-Lagrange
equation on surface is derived, In last section, we proposal a algorithm for
minimum problem and operator splinting method for rotating Navier-Stokes

equations with mixed boundary.

2 Main Results

Supposc (', 2*) € DC# (2D-Euclidian Space). A smooth mapping 8(z',
z?) is image a surface. On the other hand, suppose the (r,6, z) is a polar

cylindrical coordinate system rotating with impeller’s angular velocity w.

<

5
(€,+é,,k) are the corresponding base veetors. z-axis is in the rotaing axis of the
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impeller. N is the number of blade and e= =n/N. The angle between successively

two blades is Z_Nn The flow passage of the impeller is bounded by 20, =I'\, U I U

LU, US. US_. The middle surface S of the blade is defined as the image R of
the closure of a domain DCR? where R. D—>% is a smooth injective mapping
which can be expressed by that for any point RC)ES

R(z) = 2, + 20z ,2)é + 2k, V= (z',z9) € D (2.1
where ®€ C* (D, R) is a smooth function. = (x', z%) is called a Gaussian
coordinate system on S. It is easy to prove that there exists a family S, of surfaces
with a single parameter to cover the domain {2, defined by the mapping D—S, =
(R(z',2%:8) + V (z},z*) €D},

R(z',2*:8) = 228, + 22 (& + O(x' ,28))ép + 2k 2.2
It is clear the metric tensor a, of S, is homogenous and nonsingular independent
of & and is given as follows
3R 3R

ap =555 =% + 70,05, a=detlay) =1+7(@ +6)>0 (2.3

From this we establish a curvilinear coordinate system (x!,z%,&) in %.
(ry0,2) > (2", 28,8 :2' =2, 2*=r, 8=¢(—0(,2")) (2.4)
that maps the flow passage domian
Q. = {R(z",2*,8) = 2%¢, + 2 (£ + Oz’ , 228, + 2k, V (2',2%,8 € O}
into a fixed domain in E*.
=, 2YeD,—1<e<L1l}) in &P
which is independent of Surface S of the blade, and Jiacobian
d(r,0,z
I(56755)

The transformation is nonsingular.

= €

Assume that (2", 2*,2%) = (r,0,2), as well known that corresponding
metric tensor of & is (gyv =1, gy =r%, gyv =1,8;+ =0Y i'7£;"). According to
rule of tensor transformation under coordinate transformation we have following
claculation formulae
Qi oz’
dz' 3x’

Substituting(2. 4) into above formulae the metric tensor of E* in new curvilinear

gy — 8¢y

coordinate system can be obtain

8w = Qs &y = 8 = r'e@;, g =7, g =det(g;) =¢&'r* (2.5)

. d . .
Through this paper we denote ®, = ) Its contravariant components are given

dz"
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by
g¥ =%, gP=gf =—¢1@,, g¥ = rtA+A1VOIY)  (2.6)

where | V@{? =6+ and O, = a@

Model First
Theorem 1 Suppose the @ is a blade’s surface defined by (2.1). Then 8 is

proposed as a solution of following elliptic boundary value problem:

2 2 .
(ch w) "@a)+ I (1% (w, @)

ax"ax dxfax dr*dzx”
] —@(r@*(w,@))+@°(w,iv)r=0, Vi, ) e DC®# (2.7)
o=6, 22—9., On oD
an

combing Navier-Stokes equations and linearized Navier-Stokes equations, where
(w, p) and (w, p) are solutions of compressible or incompressible rotating
Navier-Stokes equations (3. 1) and linearized Navier-Stokes equations (3. 7) or

(3. 24) respectively and
1
K# (10,0) = 2 W=R, W% =J wrwhde (2.8)
-1
&, ,d* are defined by (4.17) (4. 18) respectively.

Variational formulation associated with (2. 7) is given by

= 0} such that

0

Fin® € Vo(D) = (g | g € H'(D)q Ir, = 8,5

N

ﬂn[(K’ﬂ#(w)@ + ¥ (w,8) I, dz

+JJD[7‘@A('W’@)77,\ +T'(Ap0 (W9'&1’@)77]d1' = Q, V 77 6 Hﬁ(D)

2.9
Model Second

Theorem 2 Suppose the @ is a blade’s surface defined by (2.1). Then @ is
proposed as a solution of following elliptic boundary value problem:
{ — (Ko (w)A® + K* (w,0)8,) + F* (w)0,8, + F*(w)8, + Fy(w,8) = O
e, =6
(2.10)
where K, (w) ,K* (w) , F* (w) , F* (w) , Fo (w,®) are defined by (5. 17).

The variational formulation associated with (2, 10) is given by
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Find® ¢ HY/(D) = {v | v &€ H' (D),v = ®*ony = 3D} such that
JD{[W()('(U9P9@)77+WA(UJ5P’@)77,\ _,erWa a(T@;?A—)"]€w rz }dx = O,

Yy € Hi (D)
(2.1
where
V' (w, p,@) = Wi(w,p) + T (w,p)O, + ¥, (w, )00, (2.12)
where W, (w,p,0), W (w, p), ¥ (w, p), + ¥, (w, p), are defined by (5. 10)
(5. 11D,

3 Rotating Navier-Stokes Equations With Mixed Boundary
Conditions
At first, we consider the three-dimensional rotating Navier-Stokes equations

in a frame rotating around the axis of a rotating imperller with an angular velociy

w:

%+ ooy _
at-l-dlv(pw) =0

1 / (3.1
PC"(B_t +w' V,T) — diviggradT) + pdivie — @ = h
» = 5o T

a’ &
T3PS >
a
4 ‘\1}
P \‘V
A 4
Y
3
cvVd "/

%- Nt EACCE ¥: )
w

where p is the density of the fluid, w the velocity of the fluid, % the heat source,
T the temperature, £ the coefficient of heat conductivity, C, specific heat at
constant volume, and u viscosity. Furthermore, the deformation rate tensor,

stress tensor,dissipative function and viscous tensor are given by respectively:



8 SR R R R AL RR B REERRRERIRG

ey (w) = —;—(V;w,- +Vw)s i =1,2,3

e (w) = g*gme, (w) = l(V it 4 iggf)
2 (3.2)
o (wyp) = A¥"e,, (w), &= A" ¢;(w)e; (w)
A = pgight - y(ghg™ +g"g"*), A=— %y
where g, and g’ are the covarant and contravariant components of the metric

tensor of dimensional three Euclidian space, respectively

. j ; dw;
V,-w’=%-|-1"ﬁw"; Viw; = w-]—mwk

= (3.3)
i i (a_gﬁ + Igu ag_f*) .
* T8 50 T axt ar
The absolute acceleration of the fluid is given by
o =T 4wV + 26w — o't
(3.4

a =%’§+<wv>w+z;x$+;x<;xﬁ>

where w=wk# is the vector of angular velocity, L the unite vector along axis, and
R the radium vector of the fluid particle. The flow domain £, occupied by the
fluids in the channel in the impleller. The boundary &2, of flow domain (.
consists of inflow boundary I',,» out flow boundary I'.., positive blade’ surface
S, , negative blade’s surface S_ and top wall I', and Bottom wall I, :

N =I=T.UT. USUSULNUL (3.5
Boundary conditions are given by

wls_us+ = 0, 'wlpb = 0, 'w]pt =0

o' (w,pIn; |r = ghs o (w,pn;|r, = giw» Natural conditions (3.6)
%%—FA(T— T,) =0 when A = 0 is constant

If the fluid is incompressible and flow is stationary then

divw = 0

(V) w+ 20 X w + Vp — vdivie(w)) =—w X (@ X.R) + f
wlp, =0, =8 USULNLUDL

(—pn+ 2w ln, = gar It =Tn U o

(— pn + 2ve(w)) Ipm“ = Gou

3.7

'w\z=o =wy(x)y O
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For the polytropic ideal gas and flow is stationary, system (3. 1) turns to the
conservation form
div(pw) = 0
divipw @ w) + 2 X w+R Y (¢T) = paw + QA+ ) ¥ divie— pw X (@ X R

N

aivfpL el 4 o7+ RTOw)

= kAT + Adiv(wdivw) + pdiviw V w] + -;—A | w|?

(3.8)
while for isentropic ideas gases, it turns
div(pw) =0
div(gw ® w) + 20 X w+aV () = Zudiv(e) + AVdivw — g X (w X R)
(3.9

where y>>1 is the specific heat radio and « a positive constant.

The rate of work done by the impeller and dissipative energy are given by
I(S,w(S)) =ﬂ g neewrdS, J(S,w(S)) =JH & (w)dV  (3.10)
s.us, a,

where ¢, is base vector along the angular direction in a polar cylindrical coordinate
system.

Let us employ new coordinate system. Flow’s domain {2, is mapped into Q=
DX[—1,1]. where D is a domain in (2!, £*) € % surround by four are ;1?3, C/B,
51\3 ) EA such that

aD =y, U71,>'0=A’§U55,y1=é—l§uf)—,\4

and there exist four positive functions ¥, (2), ;o(z) s 71(2) 4 7, (2) such that
re =2 = 9") = 1 (2) onA/l\B, 22 = 7, () onC’JB
ri=x =7 (2) =nk onl/)z, 2 =7 ) ong\C (3.1
ro << %o(z) < ny onX\B, ro < 7 (2) <<r on (/:B
ro <)<, on 1,374,, ro <@ <n onI§E
Pl = A s Pow = ATou) s T = AT, I = AT
=TwUl.Lh=LULU{t=1U{e="1 (3.12)
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D=y Un, Q=0 UN
vw=MNONTHDUWMAOL), n=MDOUL)UMUTL) (G.13

Where 94 Is defined by (2. 1).
Let denote

VD) = {v|w€ H'(Q)*,vlr, =0}, H () ={q| ,g€ H' (D)
(3.14)
‘Z|r0 =0}

The variational formulations for Navier-Stokes problem (3. 7) and (3. 9) are
respectively given by

Find(w,p),w € V(Q),p € L*(£2),such that

alw,v) + 2(w X w,v) +blwsw,v) — (p,divy) = (F,v), Vve& V)

(g divw) =0, VYq€& L*(D

(3.15)
and
Find(w,p),w € V(Q),p € L7(2),such that
a(w,v) + 2(w X w,v) + b(ow,w,v) (3. 16)
+ (—ap + Adivw, dive) = (F,v), Yve& V(D)
(Vg,pw)) = (gwn,q) Ir» Vg €& Hr (D
where

(Fyv) #= (f,0) +4g+0)r s (g>0) = (g0 | r, + {gou»v) > Tous

alw,v) = j Avme. (w) e (v) /gdzxde (3.17
Q

b(w,w,v) = J gmw’ V;wto™ /g dxdg
o

Next we rewrite (3. 7) (3. 9) in new coordinate system. Because second kind of
Christoffel symbols in new coordinate system are
Ty == 9000y, b =— 8.0,
Iy = e 'r1 (800 +8:00)6, +¢7'0, +¢'10,0,0, (3.18)
I, =T% =78, +7,0,, I'i =—¢c'rdn, I'i =0,

the covariant derivatives of the velocity field V, w’ =a—:;+1’ﬁw" can be expressed

as
Lemmal Under the curvilinear coordinate system (x!, 2*, &) defined by

(2.4), the covariant derivatives of the velocity field can be expressed as



