VLU %l e i

BE & #HEC AlE%m XA kO Rl oW OB j
_ES ﬁ mEE B

CI SN S R o




L3

; mﬁ w
< L j
visudll




AEEN

ARFBRNAEEAE S T HHOKHE RSB &R, A F, WIRES Bk
IR, AESHASAE. AEVHEE, ARESANNERMERLSLNARE, SESA NS
ERX(EED EHEIERAER, UFDREETFREBRXAE.

ABHFQETENAR BERGE . MNESHEEEAR KBEENFH BN EHLE. Web HE
HES, 2BNEHTRHIE, B4 SRS G, BT LUE 5L BB LR A 3% b 9 358 S0kt
A, RATHTENES SAREALESEE LN TRERARER. S FREE TRIESEH
_Riﬁ\iﬁﬁﬁmrﬁzm&ﬁﬁm~ﬂiﬁﬁmm)ﬁ,m%—*ﬂiéﬁm\ﬂﬁim%iﬁ%,

BBERESE (CIP) ¥ 1
RS WG/ B XS —ER . ERKES

Rt . 2006. 5

ISBN 7-5624-2996-0
I.3t... I.%... D BFHAENL—XE—&%

FHR—#HHM N.H3l

o [ B 4 B 548 CIP 848 B 57 (2006) 88 032773 &

HHEN AL EE
T & BERLC
BER NEKX B R W B
T B IWE BER
BERE: TRK BRI TR
RERN S8 REDH & B
BERAZERTHRART
HARA : K E9E8
k- BRTHIMTNES 174 EERAZ(A X)W
(4% : 400030
E81%:(023)65102378 65105781
&5 :(023)65103686 65105565
[k s http: //www. equp. com. cn
R 78 : fxk@cqup. com. en(FHIZEH )
2EFEDERH
BERNBEIBSERATLIR
P2 .787X1092 1/16 E.11 =E.274 F
2006 FE 5 S 1R 2006 & 5 B 1 ZHA|
EN¥L-1—3 000
ISBN 7-5624-2996-0 BN :16.00 T

APUHRHAKIERBOE, S ARBIR
HERRE, ROAEBOHALE
HEGRHEWERERS, EE4R




I SIS L

HIMERRBER

RTEFHAHMRS  REAFERE, B BN HF R T ANE XS, HER
FUTEEHZRELEFEERFR, REB R R CREBAEXNBTHR PEZTHFE
BB LRETR

H4 i
#48,

B E B VR
R4
TR () R | B (B %
EHT R R A T
cZIX 3 NG |
509 R AL

(%)
(FHL

MR B4 S « KRB

E—mail : (ﬂZ\iﬁ )
XA BRI

AIEET

HE

BE - EEATAOIPNES 1L SERAFEARIBERKE
H AR T 35 88
Ik 4% : 400030
B 15 :023-65111124
£ H..023-65103686
M4t . http://www. cqup. com. cn

E-mail: fxk@cqup. com. cn



BATEDEDRAY EH T ENERRE R BRERHR.
HENNEHACEESE R, TEABIHEN TENSWRESN
REEBEVATDHELN. REABNENRB I REER
ATBNNENMBR E25 ERBIEREREEURR,

AEHM R RASH ARE WAME. ERLERE
FTENN2SKEARGTENNBRR BFERNERANITE
NESNARR, ABETEROBENAE. XML 2. Web REH
EBRE, RREEEHR T B, IAERRNREES R
ST 7E SQL ARG ED, NRESER, EENARNER
BERSEE M. EREFEANNA MEHE, EB BRI
BRARNEN, RASTHIER0SIE SERM, EETR
ESENER, BHF,

AT SMEREZER,EER ERZVEREEBHR 12
= RTVENERD NS HOITENAR JBEH ESRE
BUSRESH, ABASTHRITENNASL D ABEIRE.
SEA MESBE MIEAESTENSH SREENREEE.
AT B8 B LB ESBIA.CAD.CAM &, ZEBTNG
H.AHESRAONTR, WEEXEWNAE; B9, L HES
NS EEVR. SHHEITAREEE, UBHLETBOERENT.
SRITENNA.

ABHBNERASRE R E R QR ELRQT, WA
AR BEEEETRE, FOSO B BREARSNRS. |
DREBCREE 4,11 B, WEARSE 7.8 8, RAIKSE 1.5.10
ERNR, BERSE 2.9 5, S0BFEE 3.6 5, BERRSS
12 8, ERESHREED, 88T DENARASRASHEK
REHRE ARV, EERRROE, @Y 2ARS

=1=



NS IRENEARMARBEEE RRRIVRIE
ERINEAZREEHRN LBRTE R RERISREBET

. PBNEBREETERBN, MECLRARNVES . BFR

SECE, BPEEERKRZL, BB NiSE/MELE,

W H
2006 4£ 1 A

l
[\S]
I



Contents

Chapter 1 Languages and Programming

1.1 Programming Concepts
1.2 File Access in C

1.3 Operator Overloading in C++ -

Exercises 1 seeeeesteessaareneronnsnnes

Chapter 2 Computer Graphics

v 11

2.1 Building Basic Graphic Element — the Point and

Line eecreeeee
2.2 Histogram Processing
2.3 Tmage Compressing and Coding

Exercises 2

Chapter 3 Multimedia
3.1 MPC weeerevrrrennns
3.2 MIDI Interface

3.3 Video Compression

Exercises 3 A8 B E A EEA AN IS SR I S TSSO P EN ISR I NI VI SUS IS

Chapter 4 Network and Communication

4.1 What is the Internet
4.2 Access Networks

4.3 Electronic Mail in the Internet «:-eovseeeees

Exercises 4

Chapter 5 Making Web Pages
5.1 Web Design Principles

5.2 XHTML and HTML cecceccecncrennnn

5.3 Cascading Style Sheets +:+---

Exercises 5

:1:

cenee 12
- 15
- 19
- 22

- 24
- 29
- 31

33

. 34
v 38
e 41

. 45

eer 46
. 50
- 53
- 56



Chapter 6 Database
6.1 Brief Overview of Database <e<tesreeeeerereeaias 57
6.2 Brief Introduction to SQL «+«+essssrerressenreencians 6]

EXErcises 6 reeceecseetucnomncoeiorioersosoniscsacesencanses 7

Chapter 7 Computer Control
7.1 Information Theory «t+ereteseeesmereeannuiconnens 68
7.2 Automata Theory se-eteesseerereesereeoniennniannnns 71
7.3 Introduction to Modern Control Theory «----«--+ 75

EXercises 7  +resessrsereeacsaceranusietniomsnsiseienssanacaess 78

Chapter 8 Information Management
8.1 Electronic Commerce «++srssseresreressescrsssreeres 80
8.2 Computer Security s+ereeeeesesesrsnserceeiecenieniaes 85

EXErcises 8§ recoeereesrecainsrirniensireriiinrniicsinsncnsen G0

Chapter 9 Artificial Intelligence
9.1 What Is Al «ecvetcrcmmtamianenninioivnieieenicnnennens 9]
9.2 Intelligent Agents ssseessrererecensniieinnnnninnnen. 94
9,3 Robot Vision sresstsersesrssretnireriaciecenenseses 96
Exercises 9 ercorereeerserniiiniiiniiiiiiinoiimrsieses e 100

Chapter 10 Games
10.1 The Education of a Computer Game Designer
-+ 101
10. 2 Artificial Intelligence in Game Design s+« -+ 105
10. 3 Localization +++«-s+sssesesserusnernsnssresiennceecss 109
Exercises 10  seeveseererererernmmnntieisiniaieineoeecnnennens 112

Chapter 11 Wireless and Mobile Network
11.1 How Does a Wireless Network Work «--+«+-- 114
11.2 Types of Wireless Technology ««=-=reeereeeesans 117
11.3 Advanced Signaling Techniques Used to Mitigate
Multi-path  ceeseeesesersmeniiiinniiinen 121
EXErcises 11 +reveesrrereareeisnnreniresesennnsnesnennnes 124

1
™
I



Chapter 12 CAD & CAM
12.1 Computer Aided Design  +-ersreessesreesnsecees 125
12.2 Engineering Analysis e rereersesesesmnesncees 127
12.3 Computer Aided Manufacturing «e-eeseeeeereee 128
12.4 Computer Integrated Manufacturing = -«--e--=- 130
Exercises 12 veeesesseusesneserssioennsenmennsnneseesisises 132

APPENDIX
Appendix-1 Exercises Answer Key --oeoerereereerer 134
Appendix-2 Glossary «eseeseerersesssnsmssnissaaesns 157
Appendix-3 Bibliography evsssesssesessseneennne 162

Il
(98]
[



Chapter 1

Languages and Programming

1.1 Programming Concepts

Here are a few basic programming concepts to help you get started.

[1]Memory

A computer’s memory is a very large set of bytes in which it stores the numbers (and
letters and so on, but they’re really all just bits) using at the moment. When you write a
letter using a word processor, for example, the computer loads the word processing program
file into memory, and also keeps the letter in memory as you write it. When you have
finished the letter you can save it, and exit the word processor program, which is then
discarded from memory along with your letter (but the files stay on disk where you can use
them to load the program again later).

I say the memory is a collection of bytes because the bytes are arranged and numbered in
order from zero to some very large number (if you have 128 Mbytes of memory, for
example, the bytes are numbered from zero to 134 217 727). The number of each byte is

called its address. ©

[2]Program

The whole point of programming is to create programs, so it’s important to know what
a program is. A program is a list of step-by-step instructions telling the computer how to do
something. '

" Computers are very stupid, so they need explicit, detailed, step-by-step instructions in
order to do something. Reading a file from a disk into memory, displaying a word on the
screen, and so on are all accomplished by telling the computer exactly which signals need to
be sent to the hardware (the disk drive, or the video controller) at what time. A collection of
these instructions strung together to make the computer do something useful (or at least do

something) is a program, @

[3]File
A file is a collection of data stored together under one name on a disk (or some other

permanent media). ® The computer must read the data from a file into memory before it can

=1=



WL AT AL R

do anything with it, and in order to save data so that it will not be lost when the computer is

turned off (or the program ends), the data will usually have to be written to a file. .

[4]Variables

A variable in math is a symbol representing an arbitrary number. In programming, a
variable is also a symbol (the variable name) that represents an arbitrary number (the value
of the variable). However, that is pretty much where the similarity ends. ® In math you
write and manipulate equations to prove things that are true for all possible values of a
variable, or to find the set of possible values for which the equation is true. In programming
a variable has a particular value at any given time, and the reason it is called a variable is
because that value can be changed as the program runs. A variable can be used to store a
number input by a user, or the position of the mouse (periodically updated), or the result of
a calculation, and so on.

Each variable in C or C+ + has a type. The type of a variable determines its size in
memory (the number of bytes it takes to store) and its representation, such as int for integer

words, char for character bytes, and float for floating point numbers.
[5]Assignment and Arithmetic

Variables can be used to perform arithmetic. That is, you can add, subtract, multiply
and divide using variables (as well as ordinary numbers, or constants). You have to assign
the result of such arithmetic to a variable (or otherwise make use of it immediately). Thus
the following statement:

x=y+ 4

This assigns the result of adding four to the current value of the variable y to the
variable x. Note that this is very different from what the same set of symbols means in math.
To further illustrate, the following statement doesn’t make much sense in math;

x=x+1

There is no (ordinary) number which is equal to itself plus one, which is what the above
would mean in math, but in programming it is perfectly ordinary and results in the variable x

having a value one greater after the statement has been performed.

Words

bin'af}rf‘f‘bainari] adj. Z—ITCH, —3EHI8 holdover [ 'hauld,suve(r)] n. FEFHZE T
decimal ['desimal] adj. 34 explicit [iks'plisit] adj. AN
arithmetic [o'ri®matik] n. ZH& permanent [ 'pa:menant] adj. KA M
differentiate [ |difs'renfieit] v. Z& arbitrary ['a:bitreri] adj. ZAM

representation [ reprizen'teifon] n. iR ,EBR periodically [piori'odikali] adv. JEEA{EHE
symbol [ 'simbsl] n. fF5

I
[AV]
I



Chapter 1 Languages and Programming

Notes

Onumbered ZHBARS , ERXRBA AR . ZMATERNNEFEIFTHERFH
FIFEMN O FMHATHRSEB XM BANE, Sl 128 MB HER M 0 4 5 3
134 217 727, BAFVWHHSHZ A",

@strung 2y string #5341, B 5 B AKX string K €A TRRFERERR. BT
BN CBFR—EBBRERNES, T ETELER—ERNESF (EOHMEHF4R)".

Qunder ZE AL BB KT RATFXN XHREENRS, CEL G LEHRE
BUE RAL A AR L DATEGE”

@However 3| i # 47 that is pretty much where the similarity ends. &) 7] 1% K “ ¥ 2% h
HEERE— I REATERENFTS  EBFRITP TRURE I HE—T R
& AFRR—ATRNKME, WERNME. BREN20E A MR T 1,

Terms
bit
A fundamental unit of information having just two possible values, as either of the

binary digits 0 or 1,

1.2 File Access in C

The examples so far have all read the standard input and written the standard output,
which are automatically defined for a program by the local operating system.

The next step is to write a program that accesses a file that is not already connected to
the program. One program that illustrates the need for such operations is cat, which
concatenates a set of named files onto the standard output. © Cat is used for printing files on
the screen, and as a general-purpose input collector for programs that do not have the
capability of accessing files by name. For example, the command

cat x.cy.c
prints the contents of the files x. ¢ and y. c (and nothing else) on the standard output.

The question is how to arrange for the named files to be read — that is, how to connect
the external names that a user thinks of to the statements that read the data, @

The rules are simple. Before it can be read or written, a file has to be opened by the
library function fopen. Fopen takes an external name like x. ¢ or y. ¢, does some
housekeeping and negotiation with the operation system (details of which needn’t concern
us), and returns a pointer to be used in subsequent reads or writes of the file.

This pointer, called the file pointer, points to a structure that contains information
about the file, such as the location of a buffer, the current character position in the buffer,

=3 =



VHRERLR R R L iR

whether the file is being read or written, and whether errors or end of file have occurred.
Users don’ t need to know the details, because the definitions obtained from <stdio. h>
include a structure declaration call FILE. The only declaration needed for a file pointer is
exemplified by

FILE = ip;

FILE * fopen(char * name, char * mode);

This says that fp is a pointer to a FILE, and fopen returns a pointer to a FILE. Note that
FILE is a type name, like int, not a structure tag; it is defined with a typedef.

The call to fopen in a program is

fp = fopen(name, mode);

The first argument of fopen is a character string containing the name of the file, The second
argument is the mode, also a character string, which indicates how one intends to use the
file. Allowable mode includes read (“r”), write (“w”), and append (“a”). Some systems
distinguish between text and binary files; for '-chevlatter, a “b” must be appended to the mode
string. ©

If a file that does not exist is opened for writing or appending, it is created if possible,
Opening an existing file for writing causes the old contents to be discarded, while opening for
appending preserves them. Trying to read a file that does not exist is an error, and there may
be other causes of error as well, like trying to read a file when you don’t have permission. If
there is any error, fopen will return to NULL. '

The next thing needed is a way to read or write the file once it is open. There are several
possibilities, of which getc and putc are the simplest. Getc returns the next character from a
file; it needs the file pointer to tell it which file.

int getc(FILE = {p)
getc returns the next character from the stream referred to by fp; it returns to EOF for end
of file or error,

putc is an output function:

int putc(int ¢, FILE * fp)
putc writes the character ¢ to the file fp and returns to the character written, or EOF if an
error occurs, Like getchar and putchar, getc and putc may be macros instead of functions.

When a C program is started, the operation system environment is responsible for
opening three files and providing file pointers for them, These files are the standard input,
the standard output, and the standard error; the corresponding file pointers are called stdin,
stdout, and stderr, and are declared in the <Ustdio. h>>. Normally stdin is connected to the
keyboard and stdout and stderr are connected to the screen, but stdin and stdout may be
redirected to files or pipes.®
Getchar and putchar can be defined in terms of getc, pute, stdin, and stdout as follows:

# define getchar() getc(stdin)

Il
S
[



Chapter 1 Languages and Programming

# define putchar(c) putc((c), stdout)

For formatted input or output of files, the functions fscanf and fprintf may be used.
These are identical to scanf and printf, except that the first argument is a file pointer that
specifies the file to be read or written; the format string is the second argument.

int fscanf(FILE « fp, char * format, ...)

int fprintf(FILE = {p, char * format, ...)

Words
concatenate [ kon'keetineit | v. & definition [ ,defi'nifon] n. E X
external [eks'tanl] adj. #E8HY declaration [ deklo'reifon] n. FEHA
housekeeping [ 'hauski:ping] ». HERFHE exemplify [ig'zemplifai] ve. HiE
negotiation [niigoufi'eifon] n. HiA argument [ 'aigiument] n. B, T &
subsequent ['SAbsikwant] adj. BEIGH) discard [dis'kad] vt. & v. £F
Notes

Dcat, B— & ¥ K UNIX fr&. A RN BT REMMWEE - NBF T UM E K
58P EENHEHITEE, —NMIFRHFR cat &4, EATH— R4
BEEEXRGFE DR ER L L.

@that is, 5|t RAIE. 26 A1 %0 “ BB AE T 0 4 6845 6 & SO RE S B Y Bk 2
o, A0 ZE P B A BRSSO S BB B 2 M2 LR R .

Otext files: XA X, binary files; P HI XM, HAMEFR“THEMHEAF (). B
Cw’) GBINCCa’) . Fese R G X SCA SO A 3 SO LA X B, 3 FIE &, T L
BATFHBHEEMLE D",

@stdin,stdout,stderr B CEFF 3 M HEITFHF MR LML . pipe(Bil) BRIERSK
F-TE5RFRASEEXCHBE. HAOFENEH stdin SREMERE, T stdout
Ml stderr M ZEEBF R . 1H stdin F stdout FATLIREE MBI XHREEH”.

Terms

typedef

typedef is a C keyword allows you to create a new type from an existing type.

pipe

A pipe is an operating system mechanism originating in UNIX, which allows the user to

direct the output of one process as the input of another process.

1.3 Operator Overloading in C++

Operator overloading allows the programmer to define versions of the predefined
= 5 p—q



WRBL AR LR

operators for operands of class type. For example, the String class defines many overloaded
operators. Here is the definition:
# include <liostream>
class String;
istream & operator>>>>( istream &, String & );
ostream & operator<<<(( ostream &, const String & );
class String {
public:
// overloaded set of constructors
// provide automatic initialization
String( const char * = 0 );
String( const String & );
// destructor: automatic deinitialization
String() ;
// overloaded set of assignment operators.
String & operator=( const String & );
String & operator=( const char * );
// overloaded subscript operator
char&. operator[]( int ) const;

// overloaded set of equality operators

// strl == str2;
bool operator=={( const char * ) const;
bool operator=={( const String & ) const;

// member access functions

int size() { return _size;}

char* c_str() { return _string; }
‘private;

int _size;

char * _string;

Vs

The class String has three sets of overloaded operators. The first set defines the
assignment operators for class String:

// overloaded set of assignment operators

String & operator=( const String & );

String & operator={( const char * );

The first assignment operator is the copy assignment operator, which supports the
assignment of one object of type .String to another. The second assignment operator supports
the assignment of a C-style character string to an object of type String, as follows;

=6 =



Chapter 1 Languages and Programming

String name;

name = “Sherlock”; // .use of operator=( char * )

The second set of overloaded operators defines one operator - the subscript operator;

// overloaded subscript operator

char& operator[]( int ) const;

This operator allows programs to index into objects of class String the same way we
index into an object of built-in array type? ;

if ( name[0] ! = ¢S’ )

cout << “oops, something went wrong\n”;

The third set of overloaded operators defines equality operators for objects of class
String. A program can compare two objects of class String for equality, or can compare an
object of class String with a C—st‘yle character string for equality.

// overloaded set of equality operators

// strl == str2;
bool operator==( const String & ) const;
bool operator=== ( const char * ) const;

Overloaded operators allow objects of class type to be used with the operators, allowing
the manipulation of objects of class type to be as intuitive as that of objects of built-in types.
For example, if we want to define an operation to support the concatenation of two objects of
type String, we could decide to implement this new operation as a member function named
concat(). But why choose the name concat() and not append(), for example? @ Although
the name chosen is both logical and mnemonic, users may forget the exact name we chose, It
is often easier to remember the name of an operation if wé define it as an overloaded
operator. Instead of concat(), for example, we prefer to name the new String operation
operator+ = (), ' ,
An overloaded operator is declared in the class body in the same way as an ordinary
member function, except that its name consists of the keyword operator followed by one of a
large subset of the predefined C++ operators. Operator+ = () might be declared as follows
in class String,
class String {
public;
// overloaded set of + = operators
String & operator +=( const String & );
String & operator +=( const char * );
/]

private;
/]

}s



WRABLAE %S

Class Member versus Nonmember

Let’s look at our String class equality operators in a little bit more detail. The first
operator allows us to compare for equality two objects of class String, and the second
operator allows us to compare an object of class String with a C-style character string. ® For
example:

#include “String. h”

int main() {

String flower;

// set flower to something

if ( flower == “lily” ) // ok
/]

else

if ( “tulip” == flower ) // error
/]

}

The first use of the equality operator in main () calls the String class overloaded
operator= = (const char * ), However, the second use of the equality operator results in a
compiler error. How can this be?

The problem is that an overloaded operator that is a class member is only considered
when the operator is used with a left operand that is an object of class type. Because the left
operand is not of class type, the compiler tries to find a built-in operator that can take a left
operand that is a C-style character string and a right operand that is of class String. Of
course, no such operator exists and the compiler issues an error message for the second use
of the equality operator in main(),

But, you will say, it is possible to create an objéct of class String from a C-style
character string using the class constructor, Why doesn’ t the compiler implicitly do the
following conversion:

if ¢ String( “tulip” ) == flower ) // ok: calls member operator

The short answer is efficiency. Overloaded operators do not require that both operands
be of the same type. ‘

So, to find the equality operator for this comparison, the compiler would have to look at
all the class definitions, to find all the constructors that can convert the left operand to a
class type, and then find the associated overloaded equality operators for each of these class
types to see if any can perform the equality operation. The compiler would then need to
decide which combination of constructor and equality operator, if any, best matches the
right-hand operand! If the compiler were required to do this, the time it would take to
compile C+ + programs would increase significantly. Instead, the compiler only considers -

-8 =



