KEHENBEAS (HER)

SECOND EDITION

PROGRAMMING
LANGUAGE

(=$£IL. 'tth:q
(B=ha)

Brian W. Kernighan
Dennis M. Ritchie

? S

" WKL M - PRENTICE HALL

THE

C
PROGRAMMING
LANGUAGE

Second Edition

L

EREHES

Briﬁ(w&han

Dennis M. Kitchie

PN s

Prentice-Hall International, Inc.

(R)FEF 1585

The C Programming language 2nd”Ed/ Brian W'fkévmig’ha{l, Dennis M. Ritchie
€) 1988 by Prentice Hall, Inc.

Original edition published by Prentice Hall, inc., a Simon & Schuster Company.
Prentice Hall 24 Rl BAUEH K F LWL E P EBEN (AEEEFE BTG
)M M URAT AL ENA, V
AFALAAITRAY NZE, K2 b RCE 5 3, AN R AT)7 P28 W skl B E

FPRHEYS Prentice Hall Inc BB RS, TIHEEREHE,
bt RRAUR F EAE R 25 :01-97-0168
BHIERE B (Cip) ¥ B

C @f?&i“hg‘%%:)ﬁﬁi/(%)ﬁ?\{)ﬁ ¥ (Kernighan, B. W.), (£)B %
(Ritchie, D. M.)% . — JL50: W4 K diARdi-997. 1

CRFH BT NS AR -

ISBN 7-302-02412-X S

LG 1.3 @ O3 - 3852 e B ¢
V. TP312C ’

B KR AR 5 8 CIP U7 (96) 85 25163 5

R A AR (LTS S # 8 9, BR 4% 100084)
EpRE : TEHEREEEIRT

RATH Bt E B R R AT

P4 850x 1168 1/32 EPEk. 9

MR ¥R: 19974E3 HE LAR 1997 4E 6 B 55 2 IREIRI

B 5. ISBN 7-302-02412-X/TP- 1214

Bl % 2001~5000

& 23.000T

B AR Al &

KM REE BRELIS, BREHEE—-TERLHEER
R TR EEN ER XN CEESEELHNES
INEPREE R RGN BESAEYE; £ EERS IS,
AR TAEE, RN A 5 B AMEATHEAT O %00 35 T 32 % M
REJ1, BN BB, 145 RS WORA 2 B S ORI EUE B
WREST. AETH, AR BB KB E RN
A—RME: TURENIENHEBIRBIFE, R, EXAHRE
MR T TIREN R ABEER, FREERERFR SR
RO, BEREL VIR TEERR, B8 EUHBETR
A—RHENA BN EFREMEN B ERE S, R
T TE, RATPOR T 7 A B R 77 T B8 WA 0 306, 3 1T
WEDH AR, Prentice Hall 7y B FE K2 R X & 1R B R
SCHEK I HM SIARE B S8, AR T 8 A B, 40
EEDORERE S O & Nl 23203002

R R

Prentice Hall 23]

1996.11

Preface

The computing world has undergone a revolution since the publication of
The C Programming Language in 1978. Big computers are much bigger, and
personal computers have capabilities that rival the mainframes of a decade ago.
During this time, C has changed too, although only modestly, and it has spread
far beyond its origins as the language of the UNIX operating system.

The growing popularity of C, the changes in the language over the years,
and the creation of compilers by groups not involved in its design, combined to
demonstrate a need for a more precise and more contemporary definition of the
language than the first edition of this book provided. In 1983, the American
National Standards Institute (ANSI) established a committee whose goal was to
produce “an unambiguous and machine-independent definition of the language
C,” while still retaining its spirit. The result is the ANSI standard for C.

The standard formalizes constructions that were hinted at but not described
in the first edition, particularly structure assignment and enumerations. It pro-
vides a new form of function declaration that permits cross-checking of defini-
tion with use. It specifies a standard library, with an extensive set of functions
for performing input and output, memory management, string manipulation,
and similar tasks. It makes precise the behavior of features that were not
spelled out in the original definition, and at the same time states explicitly
which aspects of the language remain machine-dependent.

This second edition of The C Programming Language describes C as defined
by the ANSI standard. Although we have noted the places where the language
has evolved, we have chosen to write exclusively in the new form. For the most
part, this makes no significant difference; the most visible change is the new
form of function declaration and definition. Modern compilers already support
most features of the standard.

We have tried to retain .the brevity of the first edition. C is not a big
language, and it is not well served by a big book. We have improved the exposi-
tion of critical features, such as pointers, that are central to C programming.
We have refined the original examples, and have added new examples in several
chapters. For instance, the treatment of complicated declarations is augmented
by programs that convert declarations into words and vice versa. As before, all

X PREFACE

examples have been tested directly from the text, which is in machine-readable
form. ’

Appendix A, the reference manual, is not the standard, but our attempt to
convey the essentials of the standard in a smaller space. It is meant for easy
comprehension by programmers, but not as a definition for compiler writers—
that role properly belongs to the standard itself. Appendix B is a summary of
the facilities of the standard library. It too is meant for reference by program-
mers, not implementers. Appendix C is a concise summary of the changes from
the original version.

As we said in the preface to the first edition, C “wears well as one’s experi-
ence with it grows.” With a decade more experience, we still feel that way.
We hope that this book will help you to learn C and to use it well.

We are deeply indebted to friends who helped us to produce this second edi-
tion. Jon Bentley, Doug Gwyn, Doug Mcllroy, Peter Nelson, and Rob Pike
gave us perceptive comments on almost every page of draft manuscripts. We
are grateful for careful reading by Al Aho, Dennis Allison, Joe Campbell, G. R.
Emlin, Karen Fortgang, Allen Holub, Andrew Hume, Dave Kristol, John
Linderman, Dave Prosser, Gene Spafford, and Chris Van Wyk. We also
received helpful suggestions from Bill Cheswick, Mark Kernighan, Andy
Koenig, Robin Lake, Tom London, Jim Reeds, Clovis Tondo, and Peter Wein-
berger. Dave Prosser answered many detailed questions about the ANSI stand-
ard. We used Bjarne Stroustrup’s C++ translator extensively for local testing
of our programs, and Dave Kristol provided us with an ANSI C compiler for
final testing. Rich Drechsler helped greatly with typesetting.

Our sincere thanks to all.

Brian W. Kernighan
Dennis M. Ritchie

Preface to the First Edition

C is a general-purpose programming language which features economy of
expression, modern control flow and data structures, and a rich set of operators.
C is not a “very high level” language, nor a “big” one, and is not specialized to
any particular area of application. But its absence of restrictions and its gen-
erality make it more convenient and effective for many tasks than supposedly
more powerful languages.

C was originally designed for and implemented on the UNIX operating sys-
tem on the DEC PDP-11, by Dennis Ritchie. The operating system, the C com-
piler, and essentially all UNIX applications programs (including all of the
software used to prepare this book) are written in C. Production compilers also
exist for several other machines, including the IBM System/370, the Honeywell
6000, and the Interdata 8/32. C is not tied to any particular hardware or sys-
tem, however, and it is easy to write programs that will run without change on
any machine that supports C.

This book is meant to help the reader learn how to program in C. It con-
tains a tutorial introduction to get new users started as soon as possible,
separate chapters on each major feature, and a reference manual. Most of the
treatment is based on reading, writing and revising examples, rather than on
mere statements of rules. For the most part, the examples are complete, real
programs, rather than isolated fragments. All examples have been tested
directly from the text, which is in machine-readable form. Besides showing how
to make effective use of the language, we have also tried where possible to illus-
trate useful algorithms and principles of good style and sound design.

The book is not an introductory programming manual; it assumes some fam-
iliarity with basic programming concepts like variables, assignment statements,
loops, and functions. Nonetheless, a novice programmer should be able to read
along and pick up the language, although access to a more knowledgeable col-
league will help.

In our experience, C has proven to be a pleasant, expressive, and versatile
language for a wide variety of programs. It is easy to learn, and it wears well

as one’s experience with it grows. We hope that this book will help you to use it
well.

xi

xii PREFACE TO THE IST EDITION

The thoughtful criticisms and suggestions of many friends and colleagues
have added greatly to this book and to our pleasure in writing it. In particular,
Mike Bianchi, Jim Blue, Stu Feldman, Doug Mcliroy, Bill Roome, Bob Rosin,
and Larry Rosler all read multiple versions with care. We are also indebted to
Al Aho, Steve Bourne, Dan Dvorak, Chuck Haley, Debbie Haley, Marion
Harris, Rick Holt, Steve Johnson, John Mashey, Bob Mitze, Ralph Muha, Peter
Nelson, Elliot Pinson, Bill Plauger, Jerry Spivack, Ken Thompson, and Peter
Weinberger for helpful comments at various stages, and to Mike Lesk and Joe
Ossanna for invaluable assistance with typesetting.

Brian W. Kernighan
Dennis M. Ritchie

Preface

Preface to the First Edition

Introduction

Chapter 1.
1.1
1.2
1.3
1.4
1.5
1.6

2.10
2.11
2.12

Chapter 3.
3.1
3.2

A Tutorial Introduction
Getting Started

Variables and Arithmetic Expressions
The For Statement

Symbolic Constants
Character Input and Output
Arrays

Functions

Arguments—Call by Value
Character Arrays

External Variables and Scope

. Types, Operators, and Expressions

Variable Names

Data Types and Sizes

Constants

Declarations

Arithmetic Operators

Relational and Logical Operators
Type Conversions

Increment and Decrement Operators
Bitwise Operators

Assignment Operators and Expressions
Conditional Expressions

Precedence and Order of Evaluation

Control Flow
Statements and Blocks
If-Else

Contents

¥i THE C PROGRAMMING LANGUAGE

3.3 Else-If
3.4 Switch
3.5 Loops—While and For
3.6 Loops—Do-while
3.7 Break and Continue
3.8 Goto and Labels
Chapter 4. Functions and Program Structure
4.1 . Basics of Functions
4.2 Functions Returning Non-integers
4.3 External Variables
4.4 Scope Rules
4.5 Header Files
4.6 Static Variables
4.7 Register Variables
4.8 Block Structure
4.9 Initialization
4.10 Recursion
4.11 The C Preprocessor
Chapter 5. Pointers and Arrays
5.1 Pointers and Addresses
5.2 Pointers and Function Arguments
5.3 Pointers and Arrays
5.4 Address Arithmetic
5.5 Character Pointers and Functions
5.6 Pointer Arrays; Pointers to Pointers
5.7 Multi-dimensional Arrays
5.8 Initialization of Pointer Arrays
5.9 Pointers vs. Multi-dimensional Arrays
5.10 Command-line Arguments
5.11 Pointers to Functions
5.12 Complicated Declarations
Chapter 6. Structures
6.1 Basics of Structures
6.2 Structures and Functions
6.3 Arrays of Structures
6.4 Pointers to Structures
6.5 Self-referential Structures
6.6 Table Lookup
6.7 Typedef
6.8 Unions
6.9 Bit-fields
Chapter 7. Input and Output
7.1 Standard Input and Output
7.2 Formatted Output—Printf

CONTENTS

57
58
60
63
64
65

139
143
146
147
149

151
151
153

THE C PROGRAMMING LANGUAGE CONTENTS

7.3
7.4
1.5
7.6
7.7
7.8

Chapter 8.
8.1
8.2
83
8.4
8.5
8.6
8.7

Variable-length Argument Lists
Formatted Input—Scanf

File Access

Error Handling--Stderr and Exit
Line Input and Output
Miscellaneous Functions

The UNIX System Interface

File Descriptors

Low Level I/0~Read and Write

Open, Creat, Close, Unlink

Random Access—Lseck

Example—An Implementation of Fopen and Getc
Example—Listing Directories

Example—A Storage Allocator

Appendix A. Reference Manual

Al
A2
A3
A4

Al3

Introduction

Lexical Conventions
Syntax Notation
Meaning of Identifiers
Objects and Lvalues
Conversions
Expressions
Declarations
Statements

External Declarations
Scope and Linkage
Preprocessing
Grammar

Appendix B. Standard Library

Bl
B2
B3
B4
BS
B6
B7
B8
B9
B10
B11

Input and Output: <stdio.h>
Character Class Tests: <ctype.h>
String Functions: <string.h>
Mathematical Functions: <math.h>
Utility Functions: <stdlib.h>
Diagnostics: <assert.h>

Variable Argument Lists: <stdarg.h>
Non-local Jumps: <setjmp.h>
Signals: <signal.h>

Date and Time Functions: <time.h>
Implementation-defined Limits: <limits.h> and <float.h>

Appendix C. Summary of Changes

Index

vii

155
157
160
163
164
166

169
169
170
172
174
175
179
185

191
191
191
194
195
197
197

210
222
225
227
228
234

241
241
248
249
250
251
253
254
254
255
255
257

259
263

introduction

C is a general-purpose programming language. It has been closely associ-
ated with the UNIX system where it was developed, since both the system and
most of the programs that run on it are written in C. The language, however, is
not tied to any one operating system or machine; and although it has been
called a “system programming language™ because it is useful for writing com-
pilers and operating systems, it has been used equally well to write major pro-
grams in many different domains.

Many of the important ideas of C stem from the language BCPL, developed
by Martin Richards. The influence of BCPL on C proceeded indirectly through
the language B, which was written by Ken Thompson in 1970 for the first
UNIX system on the DEC PDP-7.

BCPL and B are “typeless” languages. By contrast, C provides a variety of
data types. The fundamental types are characters, and integers and floating-
point numbers of several sizes. In addition, there is a hierarchy of derived data
types created with pointers, arrays, structures, and unions. Expressions are
formed from operators and operands; any expression, including an assignment or
a function call, can be a statement. Pointers provide for machine-independent
address arithmetic.

C provides the fundamental control-flow constructions required for well-
structured programs: statement grouping, decision making (if-else), selecting
one of a set of possible cases (switch), looping with the termination test at the
top (while, for) or at the bottom (do), and early loop exit (break).

Functions may return values of basic types, structures, unions, or pointers,
Any function may be called recursively. Local variables are typically
“automatic,” or created anew with each invocation. Function definitions may
not be nested but variables may be declared in a block-structured fashion. The
functions of a C program may exist in separate source files that are compiled
separately. Variables may be internal to a function, external but known only
within a single source file, or visible to the entire program.

A preprocessing step performs macro substitution on program text, inclusion
of other source files, and conditional compilation.

C is a relatively “low level” language. This characterization is not

2 INTRODUCTION

pejorative; it simply means that C deals with the same sort of objects that most
computers do, namely characters, numbers. and addresses. These may be com-
bined and moved about with the arithmetic and logical operators implemented
by real machines.

C provides no operations to deal directly with composite objects such as
character strings, sets, lists, or arrays. There are no operations that manipulate
an entire array or string, although structures may be copied as a unit. The
language does not define any storage allocation facility other than static defini-
tion and the stack discipline provided by the local variables of functions; there is
no heap or garbage collection. Finally, C itself provides no input/output facili-
ties; there are no READ or WRITE slatements, and no built-in file access
methods. All of these higher-level mechanisms must be provided by explicitly-
called functions. Most C implementations have included a reasonably standard
collection of such functions. ‘

Similarly, C offers only straightforward, single-thread control flow: tests,
loops, grouping, and subprograms, but not multiprogramming, parallel opera-
tions, synchronization, or coroutines.

Although the absence of some of these features may seem like a grave defi-
ciency (“You mean I have to call a function to compare two character
strings?”), keeping the language down to modest size has real benefits. Since C
is relatively small, it can be described in a small space, and learned quickly. A
programmer can reasonably expect to know and understand and indeed regu-
larly use the entire language.

For many years, the definition of C was the reference manual in the first
edition of The C Programming Language. In 1983, the American National
Standards Institute (ANSI) established a committee to provide a modern,
comprehensive definition of C. The resulting definition, the ANSI standard, or -
“ANSI C,” was completed late in 1988. Most of the features of the standard
are already supported by modern compilers.

The standard is based on the original reference manual. The language is
relatively little changed; one of the goals of the standard was to make sure that
most existing programs would remain valid, or, failing that, that compilers could
produce warnings of new behavior.

For most programmers, the most important change is 2 new syntax for
declaring and defining functions. A function declaration can now include a
description of the arguments of the function; the definition syntax changes to
match. This extra information makes it much easier for compilers to detect
errors caused by mismatched arguments; in our experience, it is a very useful
addition to the language.

There are other sniall-scale language changes. Structure assignment and
enumerations, which had been widely available, are now officially part of the
language. Floating-point computations may now be done in single precision.
The properties of arithmetic, especially for unsigned types, are clarified. The
preprocessor is more elaborate. Most of these changes will have only minor

THE C PROGRAMMING LANGUAGE 3

effects on most programmers.

A second significant contribution of the standard is the definition of a library
to accompany C. It specifies functions for accessing the operating system (for
instance, to read and write files), formatted input and output, memory alloca-
tion, string manipulation, and the like. A collection of standard headers pro-
vides uniform access to declarations of functions and data types. Programs that
use this library to interact with a host system are assured of compatible
behavior. Most of the library is closely modeled on the “standard 1/0 library”
of the UNIX system. This library was described in the first edition, and has
been widely used on other systems as well. Again, most programmers will not
see much change.

Because the data types and control structures provided by C are supported
directly by most computers, the run-time library required to implement self-
contained programs is tiny. The standard library functions are only called
explicitly, so they can be avoided if they are not needed. Most can be written in
C, and except for the operating system details they conceal, are themselves port-
able.

Although C matches the capabilities of many computers, it is independent of
any particular machine architecture. With a little care’it is easy to write port-
able programs, that is, programs that can be run without change on a variety of
hardware. The standard makes portability issues explicit, and prescribes a set
of constants that characterize the machine on which the program is run.

C is not a strongly-typed language, but as it has evolved, its type-checking
has been strengthened. The original definition of C frowned on, but permitted,
the interchange of pointers and integers; this has long since been eliminated, and
the standard now requires the proper declarations and explicit conversions that
had aiready been enforced by good compilers. The new function declarations
are another step in this direction. Compilers will warn of most type errors, and
there is no automatic conversion of incompatible data types. Nevertheless, C
retains the basic philosophy that programmers know what they are doing; it only
requires that they state their intentions explicitly.

C, like any other language, has its blemishes. Some of the operators have
the wrong precedence; some parts of the syntax could be better. Nonetheless, C
has proven to be an extremely effective and expressive language for a wide
variety of programming applications.

The book is organized as follows. Chapter 1 is a tutorial on the central part
of C. The purpose is to get the reader started as quickly as possible, since we
believe strongly that the way to learn a new language is to write programs in it,
The tutorial does assume a working knowledge of the basic elements of pro-
gramming; there is no explanation of computers, of compilation, nor of the
meaning of an expression like n=n+1. Although we have tried where possible to
show useful programming techniques, the book is not intended to be a reference

work on data structures and algorithms; when forced to make a choice, we have
concentrated on the language.

4 INTRODUCTION

Chapters 2 through 6 discuss various aspects of C in more detail, and rather
more formalily, than does Chapter 1, although the emphasis is still on examples
of complete programs, rather than isolated fragments. Chapter 2 deals with the
basic data types, operators and expressions. Chapter 3 treats control flow:
if-else, switch, while, for, etc. Chapter 4 covers functions and program
structure —external variables, scope rules, multiple source files, and so on—and
also touches on the preprocessor. Chapter 5 discusses pointers and address
arithmetic. Chapter 6 covers structures and unions.

Chapter 7 describes the standard library, which provides a common interface
to the operating system. This library is defined by the ANSI standard and is
meant to be supported on all machines that support C, so programs that use.it
for input, output, and other operating system access can be moved from one sys-
tem to another without change.

Chapter 8 describes an interface between C programs and the UNIX operat-
ing system, concentrating on input/output, the file system, and storage alloca-
tion. Although some of this chapter is specific to UNIX systems, programmers
who use other systems should still find useful material here, including some
insight into how one version of the standard library is implemented, and sugges-
tions on portability.

Appendix A contains a language reference manual. The official statement of
the syntax and semantics of C is the ANSI standard itself. That document,
however, is intended foremost for compiler writers. The reference manual here
conveys the definition of the language more concisely and without the same
legalistic style. Appendix B is a summary of the standard library, again for
users rather than implementers. Appendix C is a short summary of changes
from the original language. In cases of doubt, however, the standard and one’s
own compiler remain the final authorities on the language.

cHarTer 1: A Tutorial Introduction

Let us begin with a quick introduction to C. Our aim is to show the essen-
tial elements of the language in real programs, but without getting bogged down
in details, rules, and exceptions. At this point, we are not trying to be complete
or even precise (save that the examples are meant to be correct). We want to
get you as quickly as possible to the point where you can write useful programs,
and to do that we have to concentrate on the basics: variables and constants,
arithmetic, control flow, functions, and the rudiments of input and output. We
are intentionally leaving out of this chapter features of C that are important for
writing bigger programs. These include pointers, structures, most of C’s rich set
of operators, several control-flow statements, and the standard library.

This approach has its drawbacks. Most notable is that the complete story on
any particular language feature is not found here, and the tutorial, by being
brief, may also be misleading. And because the examples do not use the full
power of C, they are not as concise and clegant as they might be. We have
tried to minimize these effects, but be warned. Another drawback is that later
chapters will necessarily repeat some of this chapter. We hope that the repeti-
tion will help you more than it annoys,

In any case, experienced programmers should be able to extrapelate from the
material in this chapter to their own programming needs. Beginners should sup-
plement it by writing small, similar programs of their own. Both groups can use
it as a framework on which to hang the more detailed descriptions that begin in
Chapter 2.

1.1 Getting Started

The only way to learn a new programming language is by writing programs
in it. The first program to write is the same for all languages:

Print the words
hello, world

This is the big hurdle; to leap over it you have to be able to create the program

6 A TUTORIAL INTRODUCTION CHAPTER 1

text somewhere, compile it successfully, load it, run it, and find out where your
output went. With these mechanical details mastered, everything else is com-
paratively easy.

In C, the program to print “hello, worid”is

#include <stdio.h»

main{)
{

printf({"hello, world\n");
}

Just how to run this program depends on the system you are using. As a
specific example, on the UNIX operating system you must create the program in
a file whose name ends in “.c”, such as hello.c, then compile it with the
command

cc hello.c

If you haven’t botched anything, such as omitting a character or misspelling
something, the compilation will proceed silently, and make an executable file
called a.out. If you run a.out by typing the command

a.out
it will print
hello, world

On other systems, the rules will be different; check with a local expert.

Now for some explanations about the program itself. A C program, what-
ever its size, consists of functions and variables. A function contains state-
ments that specify the computing operations to be done, and variables store
values used during the computation. C functions are like the subroutines and
functions of Fortran or the procedures and functions of Pascal. Our example is
a function named main. Normally you are at liberty to give functions whatever
names you like, but “main” is special—your program begins executing at the
beginning of main. This means that every program must have a main some-
where.

main will usually call other functions to help perform its job, some that you
wrote, and others from libraries that are provided for you. The first line of the
program,

#include <stdio.h>

tells the compiler to include information about the standard input/output
library; this line appears at the beginning of many C source files. The standard
library is described in Chapter 7 and Appendix B.

One method of communicating data between functions is for the calling
function to provide a list of values, called arguments, to the function it calls.
The parentheses after the function name surround the argument list. In this

