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1. Microwave Filters Employing a Single Cavity
Excited in More than One Mode *

WEI—GUAN LIN
Division of Eleclrioal Bngeineering, University of California, Berkeley, California
(Received October 27,1950)

A cavity resonator with input and output couplings represents a two-terminal- pair
network with an infinite number of natural modes of oscillation. In some cavities of special
shape ,a number of degenerate modes with identical natural frequencies can be found. In a
single cavity, vatious numbers of these degenerate modes can be coupled together to form
a chain of coupled circuits by perturbing the otherwise ideal geometrical configuration of
the cavity. The filter behavior is prescribed, and the two-terminal-pairnetwork realizing

this is obtained by a process of synthesis.

1 . INTRODUCTION
N a single cavity resonator there are an infinite num-
ber of modes. Suggestion on the possibility of utilizing
some of them to form a multimode coupled circuit by

means of a single cavity have been made!,with the advan-
tage of sauing space, weight, and cost. An experimental
mode of a two-mode filter has been described in the litera-
ture. ! This employs two perpendicularly polarized TE;;;.
modes to give the equivalence of two tuned circuits of a
two-stage coupled circuit. One cavity or one iris is thus

saved, but the single cavity is more complex. The full ad--

vantages of the principle can be realized only when we can
control more than three modes in a single cavity.

The purpose of this report is to carry through the the-
oretical analysis to investigate the number of modes that is
useful for our purpose of deriving a muiltimode filter.

II. A SINGLE CAVITY EXCITED WITH MORE THAN
ONE MODE
1. Number of Possible Useful Modes in a
Single Cavity

The interaction between the free oscillations of two
trned circuits depends on the coupling coefficient and on
the ratio of their complex resonant frequencies.

. * J. Appl. Phys, August, 1951

G. L. Ragan, Microware Transmission Circuils (McGraw — Hill Book
Company, Inc ., New York, 1948),M. 1. T. Radiation Labora-
tory Series, Vol. 3,PP. 673—677.

The closer the two frepuencies are to each other, the
less coupling is needed to transfer energy between the two
circuits. In the problem of coupling together the verious
resonant modes in a single cavity resonator, the coef icient
of coupling is inherently low, because, in an ideal region
of simple geometrical configurations enclosed by perfectly
conducting walls, orthogonality exists among the infinite
number of modes, small perturbations in the otherwis: ide-
al cavity configuration are introduced, and this perturba-
tion musr be small if smallperturbation theory is to be ap-
plied, Therefore, the modes of a single cavity which could
be useful for our purpose of filter circuits must possess the
same resonant frepuencies or, in other words, should be
degdnerate modes.

For a rectangular cavity resonator bounded by per-
fectly conducting walls at x=0,a;y=0,;z=0, ¢; the
resonant wavelength for both the TM and the TE waves is
given by

A=[(t/2a)+ (m/28) 2+ (n/26)]F, (1)
where !l m,and » are the integer indices, one but not two of
which may vanish. Moreover, n=0 is not allowed for the
TE waves.

It can readily be seen that a=b=c gives numerous
numbers of degenerate modes with identical natural wave-
lengths. Because when A is fixed, Bgivenby 2a/XN,
N?==/24 m?-}?, and as N is made larger ana larger,
there exist more and more possible combinations of

el
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F1c. 1. Natural wavelengths of a circular cavity.

integers [, m, aud n. For a given set of /, m, and #, there
are six’ distinct permutations; this together with the
fact that Eq. (1) characterizes both TE and T waves
makes the aumber of degenerative modes twelve when
#2=0, and ten when #70 (TEim and TEn; are not
allowed). However, we should observe that, for a given
3, the lincar dimension a is larger the higher the order
of degeneracy is; therefore, the number of modes that
is practical is still limited.

For the next case of a cylindrical cavity bounded by
the cylindrical surface r=2 and planes =0 and s=c,
the natural wavelength is given by

A 27
o [Xutntnt/(c/ay ]

where n is an integer, and X is the mth root either of
Ji(X) for the TM waves, or of Ji'(X) for the TE waves.
Here #n=0 is not allowed for the TE waves.

In Fig. 1, Ma (of Eq. (2)) is plotted asa function qf
the ratio I/o for some of the lower modes, n=1. It is
readily seen that any mode that is not axially sym-
metric is twofold degenerate, ie., two identical modes
with perpendicular polarizations. At A, A/a=2.02; the
two TE.n's and the TMy, give another case of de-
generacy. At points such as B and C, we have four
modes of the same A/a-ratios, i.e., two TEm (even and
odd) and two THyy, (even and odd) at B, and two
TEun and two Ty, at C. At point D, we have five
modes: one circularly symmetrical TEyu mode, two
7M1, modes with perpendicular polarizations, and two
T3 12, modes also with perpendicular polarizations. As
we go further down in the graph, we will find many
points where there are five modes of the'same \/a-ratio
{wherever the functions Jom(Y) and Ji'(X} have the
seme zero) ; however, no point can ba found with more
than five modes, for n=1. When » is allowed to take on
values greater than one, the number of degenerate
modes can be increased. For instance, at the point
where the A/a curves of the TEumn and the TEma

@)

. 9.

.

meet, together with their dual TM modes, we have six
degenerate ‘modes. At this point, however, the size of
the cavity is considerably increased, as can be seen by
letting m=2, n=1, m'=1, and #’=2, Thus, we shall
confine our investigation to cases where n=1,

For a spherical cavity, from

Ty} cosmd
(?) Jasd(kr) P " (cosf)
r

sinme,

the basic wave solution for such a cavity, and from the
fundamental boundary condition, we obtain the char-
acteristic values of both the magnetic and the electric
modes, respectively, with the following equations:

Fn(kr)= (x 2 iy (kr) =0,
Ckria(kn)T=0.

These two equations possess distinct roots. Therefore,
all the degenerate modes belong to the same type of
waves, either magnetic or electric. For each type of
wave, subject to condition (3), there are the even and
odd modes in the ¢-variation (except m=0). In the
6-variation, there are n+1 degenerate modes. Thus, for
a particular characteristic number %,, there may be as
many as 2n+1 degenerate modes.

The circular cavity is actually a limiting case of an
elliptical cavity, so that the latter cannot be employed
to give more degenerate modes. All other cavities of
various geometrical configuration, such as coaxial or
biconical cavities, likewise do not give more modes.
They are, moreover, difficult to make.

3

2. A Single Cavity Excited with Two Modes

Let the circular cavity supporting the lowest mode
be end-on coupled to two rectangular guides, sup-
porting only the domirant mode, through small irises
in the centers of its two end plates. The two broad
faces of these guides are, however, 90° to each other.
Theoretical and experimental® investigations point sut
that there exist two resonant modes in the cavity with
perpendicular polarization; i.e., the angular variation
is sing for one and cosg for the other, each being in
alignment with the exciting mode in the exciting guide.
No coupling, then, exists between these two modes, nor
any between the input and the output guides in the
ideal case free from any irregularity in the'cavity.

Coupling will exist between them, however, when the
jdeal case is disturbed. To find the coefficient of
coupling, we start with free oscillations. Assuming that
only two modes, a and b, are excited, .the field in the
cavity is given by

A=4H.+BH,
E=CE.+DE,, @
where

a=fE-E",,dz', C=fE‘.~Edv, etc.,

and H, and E, are normalized functions which have
been defined by Slater® as follows:

21, W. Balwanz, “The resonant frequency of a cavity-type
filter as a function of the size of the coupling iris,”” NRL Report |
R-3399, Naval Research Lab, Washington, D. C. (1949).
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where kb, is the characteristic constant for the par-
ticular function.

Now we perturb the cavity boundary by pushing a
small portion of the boundary surface into the cavity
(by inserting a small screw, for instance). In the small
volume between the original surface and the perturbed
surface, the final £ and H will be zero. There exists
then a surface current, equal to #X H, corresponding to
the discontinuity of H. Putting Eqs. (4) into the result
of the methcod of orthogonal functions, Eqs. (111, 42, 43)
of Slater’s paper,® we have, over the small perturbation
surface, for a time variation of /¢,

(w4 = [we/ (woeo)1] f X H-E da,
s
©)
(w—o?)B= [wb,/(}lofn)*]f AaxH- Eyda.
If the perturbation is small, the perturbed field is very

nearly equal to the original field, and we can then
substitute the value of H from (4). We then write:

fﬁxH-E.,da=,4fﬁx1-‘1.-E'.da

'

~—r

+Bf AXH-Eda. (7
s

The integration is carried over the small perturbation
surface S*. The integrations on the right can be trans-
formed further by converting surface integrals into
volume integrals and by expanding the divergence of
the cross product of two vectors,

[w—w2{(1+m)]A—[wp—wawsg]B=0,
—[wp*p—waangJ4 +{u?—wX(1+5)]B=0,

where we have written

LY

m= | (H2BDdv, n= f (H— E)d,
v

v

g= E,-E\dr.

v’

p=f H, B,
-

When the two modes a and b are identical, ws=ws
=uw,, and if the coupling screw possesses such sym-
metries that m=n, we have, from (8),
wt=w{1+m+(p~9)]

=w(1+m) {(1=[(p—¢)/(1+m) ]},
w=a(14+m) {1kl (p—9)/2(14+m) ]},
when p, ¢, m<1.

©

Comparing this result with the conventiora! coupled

1 Y. C. Slater, Revs. Modern Phys. Vol. 18, £t1 (1946).

circuits tuned to the same resonant frequsncy, it is
seen that the modes in the cavity have a ce2ficient nf
coupling

k=(p—q)/(1+m). (1

The pertarbation of the surface changes also the
resonant frequency of-each mode slizhtly.

Thus, we see that the input or the output guide
together with its excited mode is represented by one-
half of the circuit of Fig. 2(a). They would be inde-
pendent of each other, were there no perturbation in
the cavity proper. The coefficient of coupling ¥ exists
because of the insertation of a coupling screw, pro-
ducing the required perturbation. This is then the
equivalent circuit of our filter, b, and &s being the dis-
continuity susceptances between the input and output
guides to the cavity, respectively. Figure 2(b) is ob-

1n c Ml C
(a) (% éjb. L% g %Jh}m
l.x-:,-I e jewkl ’:"'F,

o£ 357 B3 -

F16. 2. The equivalent circuit of a single cavity excited
with 2 modes.

g

Fic. 3. The equivalent circuit of a single cavity excited
with 3 es.

tained from Fig. 2(a) by transforming the shunt coil
. into a loss-free transformer and by neglecting quantities
of the order of 1/5; in the series loops.

3. A Single Cavity Excited with Three Modes

At point A of Fig. 1 there are two TEy, modes and
one TMos mode with identical A/a=2.02. Now, if the
circular cavity of the preceding section (Sec. II, 2,
Eq. (2)) is so scaled that the ratio Mg is just 2.02, and
if two coupling screws are inserted at each end of the
cylindrical guide wall, each in line with-the maximum
electrical intensity of the input and the output rec-
tangular guides, then in the round cavity there will be
two orthogonal TE;y; modes, each corresponding to one
of the input and output guides, and one TA oy mode.
There is no coupling between the TE,, mode in the
rectangular guide and the TMoo mode in the round
guide, because at the central hole, the tangential
magnetic field of the latter mode vanishes, and former
mode has no E.. Also, there is no direct coupling be-
tween the two orthogonal TE: modes when the
coupling screws are so located and are 90° apart. Any
coupling between the input and output circuits is
through one TEun to TMoy, and TMoy to the other
TFE,.. We thus establish an over-all system of a chain

-3-



of three resonant circuits, represented by Fig. 3, where
k= (Pu‘(]n:)/((l'i'mu),

. (11}
Baa=(pua—qar), (1+m2),

— —
_ELZ._ p__,;

Fic. 4. Coupling between rectangular guides and the round
cavity for a 4-mode filter.

TasLE I. Nonvanishing field components for the 4 mode
cavity (point B of Fig. 1).
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P,= H; Hd, (12)

du= f BB,
SCREWS

where E, and H; are the normalized field intensities
evaluated at the tuning screw.

4. A Single Cavity Excited with Four and
Five Modes

To correspond to B (also C) of Fig. 1, we take Fig. 4,
where two rectangular guides are coupled to the cavity
through two holes 90° apart on the cylindrical wall.
The broad face of the former is parallel to the longi-
tudinal axis of the latter. The two guides are per-
pendicular themselves. In Table I, we tabulate the
nonvanishing field components at some favorable points
where we are going to introduce the perturbations to
effect the couplings for the modes of point B. The vari-

4.

Z{OUT OF
PAPER)

Fic. 5. Coupling between rectangular guides and the round
cavity for a S-mode filter.

ous coefficients of coupling are given by
ko= (poi—q:)/(1+mi) 13)

where mu, pij, and g;; are given by (12).

The case of point D in Fig. 1 is realized by the ar-
rangement shown in Fig. 5. The transverse magnetic
field in the rectangular guide is aligned with the azi-
muthal component of the magnetic field of the T3f 1z
mode in the round cavity. In Table II, the nonvanishing
field components of the various modes at some prefer-
able points are again given, and the coupling coeffi-
cients among the modes are examined.

TaBLeE II. Nonvanishing field components for the 5-mode
avity (point D of Fig. 1). (J1{x1))=71:(3.832)=0; Ji(xid=)y
(7.0156)=0.)
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From Tables I and II, the exact equivalent circuits
of the 4-mode and the 5-mode cavity are derived, re-
spectively, and they are represented by Fig. 6and Fig. 7.

5. Prescription of the Filter Characteristics

The equivalent circuits of a single cavity excited
with various numbers of modes a¥e all band-pass filters
whose characteristics can be obtained from a prototype
low-pass with a cut-off frequency of one radian per
second, according to the principle of frequency nor-
malization. The protojype structure of Fig. 8 is trans-
formed into a chain of coupled circuits such as the one



of Fig. 7 when the frequency transformation,
= (/W) [(0/w) ~ {wi @) ] (14

is made, where w, is the resonant frequency and Il the
bandwidth. When we identify Fig. 7 with Fig. 8, we

kis

n Xy X2 Xy X4 L
=
e g “y .y 11
ko k2 ka3 K3a kqo
Fi. 6. The exact equivalent circuit of a +-morle tilter.
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FIG. 7. The exact equivalent circuit of a2 a-mn(le fijter.

have
(F= (L/C;) lV,
Xol2= LW/ LuCot1=X{¢C2 LaCri,
X2A+12= LW IL‘!L-C'.‘AJ—I = xl‘C{"/LuCu-.,.n, (15)

X, 2=WLR/L,=XC\R'L, for =ueven,
Xot=WL/RC,=XC//RC, for »nodd.

The insertion loss characteristic of Fig. 8 can now be
prescribed ; let

L.=10log(Py/Pr}.= 10 logl 1+ 1T )], (106)

where T,(X) is the Tchebysheff polynumial of nth de-
gree, and A* is an arbitrary constant which centrols
the tolerance in the pass band. When & is small, the
maximum insertion loss in the pass band is

Loaz= 10 log(14+/42) =423k, for A1,

a. Two- and Three-Mode Filiers

The actual values of the circuit elements of I'ig. 8,
for the cases of #=2 and n=3, can be solved by the
elementary circuit theory. Thus (refer to Fig. (b))
symmetry consideration gives (,*=X7 and, conse-
quently,

R=L.'Cy,
Ir=(1—-R)*/4R, (in
Ca=2(1—-RV'R

The choice of elements Cy and R is controlled uy the

pass-band tolerance k2.
For the case of n=3, symmetry requires X=X\,
or R=C,/Cy and C;=C;, or R=1. The expression for

n L2 La Ln

o —_—

F Cy TC; Tc, m R

Fic. 8. A prototype low-pass filter.

1l

Pa/PL is
Po/PL= 1+}EL:'C12-¥J—(2C1._'L:)I]3. (18)

Identifying the coefficients of the quantity inside the
bracket with those of T3(X), we have

LZC12=‘;,
201—L3=3,
one solution of which is (the other two roots form a

complex pair) c
1=C3=2,

fom (19)

To treat the cases of n=4 and 3, we define the power
insertion loss Py/P; as

L=Py/PL=|pju)]?, (20)

where p is the voltage insertion loss ratio, i.e., the ratio
between the voltages across the load resistance with the
neiwork interposed and with an idea! transformer in-
serted and adjusted for a match maximum power
transfer; and the reflection coefficient is

T =[1-ZPV1+Z(p)], p=o+jo,
the complex frequency, (21)

where Z(#) is the input impedance of the terminated
network, T being related to the power insertion loss

tatio by the following equation:

‘_Po_ t
Pr 1—T(jw)|?
or 1
rju)|?=——-; 22
TG (1+1/Py/PL) @)

and from (21),

Z@p)=01+T(p]/T1—-T(p)]. (23)

Since Z(p) is positive real, |T'(p)| <1 for Re(p)20.
Also, T(p) is analytic for Re(p)20, because 14+ Z(p)
cannot vanish on the imaginary axis if Z(p) is real
positive. The poles of T'(p) and zeros of p(p) are, there-
fore, confined to the left-half p-plane; thus, for a given
L{w), from (22), the poles of T'(p) and consequently
L{p) itsell can be found if L(w) has no finite poles.
Similarly, p(p) can be found from (20). Then Z(p) is
obtained from (23). The network realizing this Z{p},
and thus realizing the prescribed characteristic, is to be
obtained by a process of synthesis.

For the four- and five-mode filters, let
L=1+1T8x) = 1+18— 8+ 1), o
. 4)

L= 14-1T¢(x) = 14+ 1 (165 = 2034 32)7,

so that the pass-band tolerance is about 1 db. By
locating the roots of p(p) from (24) and those of Z(»)
from (22), we have



pa(p)=4(p'+0.96p"+ 1.46°+0.75p4-0.28),
ps(£)=8(p>+0.9Hp'+1.696*-+0.983°+-0.585p4-1.25), °
P+ 240125

(£5)

(P L465°+0.28)+ (0.96p°4 0.755)

(26)

PH1254+0.312p

(0.9485*+0.96 2+ 0.125)+ (p5-+ 1.701 -+ 0.5897 p)

To realize the networks giving these two reflection
coefficients, we find that

1/Z,=2.083p+1/1.068p+1/2.83p
+1/2.83p+1/0.785p+0.383,

1/Zy=2.1186p+1/1.0964p+1/2.969p
+1/1.0964p4+1/2.1186p+1,

27

respectively, for the cases of #=4 and n=3. The proto-
type structures in Fig. 9 correspond to Eqs. (27).

The dissipation is taken into account by assuming
that the complex frequency p possesses a small but
constant real part 3; and the dissipative insertion losses
are as follows, neglecting terms involving 8 of higher
power than the third, A=1 for n=2 and k=% for all

¥s ¥ 1.068 185

G

4
(a) 3 3

2.083 Tz.as

.3830

n 1.0964

i.0964

(b}

(0) ﬂ'4, C|L2= C3L4' C,R = L4
(b] ﬂ‘5, Lz‘LQ)C|'C5

Fic. 9. Prototype structures for the 4 and §-mode filter,

the others,
L= 4{(5+0.644540.707 — %)+ (0.6 444 25)*+%},
Ly =4{[#+5+1.258405~ 35+ 1) F (28)

+ 2354264+ 1.25—22T),
L =64{[(36-+0.948)— (105*+5.665°+5.095
+0.983)x2+ (169654 0.9835°4-0.5835
+1.25) T+ +(45+0.96) ¢ — (2 885
+0.20254-0.73) 1},
Ly = 641 (364 0.944)x' — (108°+3.665°+3.095
40.983) £+ (1.09654-0.9835°+0.5855
+0.125) P2 — (105°+3.78541.69)22
+(3.776%4 5.098%+ 1.9668+0.585) 1},

3=R/L=(wo/w)1/Q. (29)

6. Coupling Elements of a Cavity Excited
with Multimodes

Equations (14), (17), (19), and (27) give complete
design data for our cavity filter. To obtain the actual

e+

coupling desigp, the value of L for each cavity must be
evaluated explicitly. Let a cavity be formed by closing

e —0

ib, jb,

o)
"l"—-—-—]—-——-

Fic. 10. The transmission line equivalent of a singh
cavity in wave guides,

a piece of- wave guide by two end plates on which there
are coupling devices, such as irises, etc. Then we have

the circuit of Fig. 10 with open circuit admittances By
and B,, as follows:

(-]

i
br{- taﬂ[—(wg—wcz) i]
4

X4 bt ,
!
1—b. lan[—(wg-—wf) ‘J
c

€ e We 294 (30)
Ba= (-) [1-— (—) j
H w
!
br}-tan[—(w?-—wf?)!}
4

/ .
I_bl = wz—(,_-‘z }
tan[c( ) JJ

At w=uwq, the resonant frequency, both By and B.»
vanish. The proper length, I, ¢f the cavity can be

X4 b2+

found from
! . h+b 1

tan) (' —w ) |=——=2— for bL>>b B, (31)
4 blb:-l bl

and the slopes of By, and B:. at w=uw,, their common
zero, are given by

dBu/d‘-'-'l w=wp= m"[(bl""‘ 1)/ (wo*—wt) *}(f/ﬂ)},
dB:g/dw’ Wy = dB“,/dwl w =Wl

for large values of &, and 5.
Now we know that, for a cavity coupled with two
wave guides 4

LL/w02‘M1=%lan/dw ] w =wg

Ll € ¥ bf
D2
X M Lﬂo(l - wcﬂ/wu’)‘

@32

or

(33)



Substituting the value for X;* from (13}, we have
b= (2C/ne)wo/w) (1—~wl o) (u/ LY/ L)
X [1—wy w3
But L is already normalized, i.e.,
L=L\/{/[1—(w/w)*] (33)

Therefore, the end result is

2C1 wo fwe\?
nr w \&o Ao

We see that this value of &, is normalized with respect
to the guide impedance that forms the cavity proper.
However, for subsequent work we need the value of
{5,| normalized with respect to the inpu and output
guides, which for symmetrical operations are identical;
therefore, we should write, in that case,

(54 = DA @N (YT 0/ me)wa N, (3T)

where A, is the guide wavelength in the coupled
guides, and X, is that in the cavity proper. This
change of scale is justified once we assume the pass
band is small so that we can neglect the frequency
sensitivity of the coupling susceptances.

From Egs. (15) we find that ¢

k= (W /w)[RCETH
Rig= (I‘V/wo)[CpLz]-‘
k3= ('V/“’G)ELECJ]“
kn= _k:!l.‘—' (H'./“’ﬂ) [L:C\]_* . (38)
for 4-mode cavity
k-_13= (IV/NO)[L?.CSJ—"
k= k= (IV/“-‘O)[[*CJ_‘ - .
for 3-mode cavity.
43 == k:N = (I"/wlr\EL'.'C3]—-l

s BET)

H X{?Clug H
nr w

for 2-mode cavity

for 3-mode cavity

r
i
i A
L

r=0 I'=f2

Fic. 11. Equivalent circuit of the coupling between a radial and
a uniform transmission line.

5. A. Schetkunoff, Proc. Ipst. Radio Engrs. 32, 83 (19H).

7. Sma!} Hole Coupling between Rectangular
Giuide and Circular Guide or Cavity

In our filters we use rectangular guides for the input
and output lines, coupled to the circular cylindrical
cavity by inductive irizes either on the end:plates or
on the cylindrical wall of the latter. Now we will give
the discontinuity susceptance to be added to the trans-
mission line circuit. We will assume that the coupling
holes are small so that the field in the hole is constant
and that the effect of the hole can be replaced by mag-
netic and electrical dipoles by following Bethe’s line
of reasoning in his studies® of small holes in an electro-
magnetic field.

a. End-On Coupling betweer Rectangular and
Circular Guides

Let a wave be incident from the rectangular guide.
In the circular guide there will be a transmitted wave
through the hole, and a reflected wave is also set up in
the rectangular guide. The nth normal mode H- and
E-vectors in the guides are normalized :

f&f?,.{=d5=1, (39)
S

f Bl tdS= 2,2, (40)

where Zon=(2/€)}(A;/N) is the wave impedance for the
mode which has been taken as a TF wave.

In the rectangular guide we havk an incident wave
and a reflected wave; in the circular guide we have a
single transmitted wave. We then apply Lorentz’s re-
ciprocal theorem to the circular guide. In the hole the
field is taken as the sum of the fields on both sides of
the hole. The magnitude of the transmission coefficient
is found,

T= 2[1— (’Iatz/rrnt‘gbl)
Fi (=N A Ho) T (41)

For small holes the discontinuity susceptance is large;
thus, the normalized susceptance is given by

b=— O/ 2eM)(/Ha He)
=0.467[A, ' (xR2ab)Y/d¥], (42)

where M =1/3(3d)?, and d=diameter of the hole. The
field components Ha, etc., are defined by (40); quan-
tities with subscript a refer to those in the transmitting
rectangular guide, those with subscript b, to the re-
ceiving circular guide. The former has a width ¢ and
height b, while the latter has a radius R.

b. Coupling between @ TE;y Mode i a Rectangular 1aze
Guide and a TM o Mode in a Circidar Cauvily
through a Circular Hole in tie Side 1Wall of
the Circular Cazily

Let the narrow side of the rectangular guide be in
the direction of the longitudinal axis of the cavity, as
shown in Fig. 11. In the rectangular guide there are
three field components, &.', E,/, and H,/, which will
excite the H,, E,, and H,, respectively, in the circular
cavity. We will consider the cavity as a radial trans-

» H. A. Bethe, Phys. Rev. 66,66-63 (1944,

o T



mission line supporting a T} mode alone, coupled
through an inductive admittance to another uriform
line supporting the dominant TE;, mode. In Fig. 11
we show the coordinates of the coupled systein and the
equivalent cireuit. Energy is considered to be originated
in the radial line, propagating through the coupling
element to the uniform line.

Now the radius of curvature of the cavity wall is
large compared with the linear dimension of the coup-
ling hole, because we are handling only small holes
compared with the wavelength, so the field distribution
inside the cavity in the neighborhood of the side wall
is the same as that in a rectangular guide of width
¢'=mwryand height §'=1. So, for the first approximaticn,
we can treat our present small hole as one that couples
together two rectangular wave guides of different
transverse dimensions, and the result given by (42} is
valid here;

b= — (3N, /d%) (abral/ )} (43)

III. APPLICATION TO FILTER DESIGN

Before taking up sample designs, we will review the
assumptions we have made or implied and discuss their
justifications. There are four main assumptions: {a) the
isolation of the coupling discontinuity or iris; (b) the
perfectly circular cavity surface; (c) parallel end plates

erpendicular to the longitudinal axis of the cavity;
and finally (d) small perturbations, i.e., small coupling
holes (d/A<1) and small screws.

1. Isolation of Discontinuities

In the first case of our problem in which a round
wave guide of §A, in length is closed at both ends, the
field intensities at one end plate of the higher mode
generated at the other are being attenuated by a factor
exp[—ar,/2] with

%a)\g = W[()‘c /)\cl)g(k/xr):_’ l]’/[l - (R/A‘)E:’i' (441‘

where Ao = (27/2nn)c is the cut-off wavelength of the
high order mode.

For good isolation of the discontinuities at the two
end plates, the value of {A\/A.), Eq. (44}, should ap-
proach unity; Le., the cavity is operated near the cut-
off condition. However, under this operating condition,
the Q-value of the cavity is very low. On the other
hand, poor isolation of the irises on the end plates in-
troduces the undesirable direct coupling and conse-
quently decreases the attenuation in the stop-band.
Hence, appropriate compromise must - be made in
choosing the operating condition.

In our experimental model of the 2-mode fiter, we
will so choose the diameter of the cavity that the (-
value is nearly maximum. The attenuation constant for
the first higher order mode, TEoy, is estimatad to be &,
which is considered as satisfactory for good isolation
of the two discontinuities.

In both cases of the 3- and 3-mode filters, the dimen-
sions are fixed for the coexistence of the degenerate
modes. For the 3-mode case, the value of (H) is slightly
less than 5. For the 3-mode filter, if we follow the line
of reasoning postulated in Eq. (7), we have then a case
of two discontinuities spaced by a distance §xa in a
rectangular wave guide of height b=1. Therefore, the
ratio of the distance between the two discontinuities to
the height of the guide is about 3, giving value of the
attenuation constant, Eq. (#4), considerably larzer
than 3.

.8

2. Ellipticity of the Cavity Wall

When the circular cavity possesses a slight ellipticity,
the even and the odd modes will both suffer changes in
natural wavelength, but by different amount.®” To
consider the allowable amount of change of the naturs!
wavelengths of the various modes, we recall that, for
small detuning, the detuning causes the relative trans-
mission to decrease, and the effective coefficient of
coupling to increase to the value given by

Eerr= [+ (8/fo)" I, (43)
where % is the actual coefficient of coupling, and A is
the difference between the resonant frequencies of the
tuned circuits. The detuning will also make the attenua-
tion curve of the tuned-circuit filter slightly unsym-
metrical when the two tuned circuits do not have the
same Q-values.

In order to realize the prescribed behavior of the
filter, the effective value £, in Eq. (43) is set equal to
the desired value of % for exact tuning. It is then neces-
sary that

Al fo<lk (46)

50 that k.« will not be greater than k. Equation (16),
therefore, serves as the criterion of the amount of de-
tuning and consequently the percentage of ellipticity
allowable. Investigations into the actual modes em-
ployed bring out the fact that the ellipticity resulting
from any reasonable manufacturing deviation in a
cavity intanded to be circular will not have serious
effects on the behavior of the filter.

3. Parallel End Plates Perpendicular to the
Cavity Axis
The deviation of the two end plates of the cavity
from perpendicularity with the axis introduces again
the frequency shift (and thus detuning amcag the
modes) and the undesirable direct coupling among the
modes.
Let the two end plates be given by
s=d +ax+8y,
(H7)
z=ds+l+oux+8iy,

where the o's, 8's, and d’s are small quantities measur-
ing the degres of deviation from the ideal case. When
they all vanish, we have the ideal case s=0and z=1
To investigate the first effect, we make use of Eq (9),

1
Af/f=%mu=;f (Hi—E#dV, (48)

dV = zdA =[d\+ (o, cosp+8, sina) [ Hda,

where v’ denotes the difference volume heiween the
deformed cavity and the original unperturbed cavity;
H;and E; are the normalized field components, evalu-
ated at the unperturbed boundary enclosed by the
difference volume:

Aff f=(p*m*/ BE) (A1),
p=0,1,2,3, -
$=1,2,3,--- for

“L. J. Chu, ]. Appl. Phys. 9, 583-591 (1938).
71.. Briliouin, Elec. Commun. 16, 998 (1938).

for TM.., (39)
TE...,



Taking the second end plate into account we hive

af/ f=(pm/em(di—di) 1]
= SO/ UR[d—d2 2] (50)

Now if we take Eq. (2), for a small increment in the
length [, we can derive the change in the natural wave-
length and arrive 2t the same Eq. (50). Thus, the con-
trol of the tolerance in d; and ds is actually taken care
of, by requiring the adherence to the tolerance of the
length of the cavity. In our case of the 5-mode filter,
by specifying that the relative detuning between the
TA 120 and the TMy;; be less than the coefficient of
coupling between these two modes, we find that the
length of the cavity must be scaled to approximately
the last thousandth of an inch.

Tilt adjustments, though not critical in causing fre-
quency shift, nevertheless are important in the spurious
coupling between certain modes, namely, between the
TEonp and the TM :p modes. To make this point clear,
we take Eq. (13) (the factor m;; becoming zero for this
case),

. f A.-Hd—- f E.-Edv

=((I/\QX'H)(X/!) for TEon and Tﬁ{lu(")

= @/NEX)() for TEow and TM ™. (13a)

Let the actual tilts at the edge of the end plate at
the X and the ¥ axis be, respectively, Iy and 1. Then
a=1,/0 and B=1l./a, and Eq. (13a) becomes

k=[1/\"?(3.832):]()\,fa)(lx,/[)
between TEn, and TA[

=[1INI(383 TN a) (/D) GD
between TEuu and T.‘{]utm,

and the order of magnitude of tolerance in the tilt
adjustments again can be estimated.

4. Sizes of Coupling Screws and Irises

In the theoretical analysis of the preceding sections,
a simple theory of the unloaded cavity with no dis-
continuity was frst established. Small perturbations
were then introduced. The effect of the small perturba-
tion was utilized to set up the filter circuit. One would
immediately wonder as to how small the perturbation
had to be in order for the field distribution to remain the
same as that existing according to the simple theory.
Experimental work shows that the sizes of coupling
screws are not critical at all. That screws of reasonable
size can be employed without any deteriorative effect
can be justified from the fact that we deal mainly with
sinuscidal and first-order and first-kind bessel functions,
both of which are regular at their zeros and have fairiy
broad maxima. Further experimental evidence® indi-
cates that an iris diameter as large as approximately
three-tenths of wavelength (i.e., the narrow dimension
of the usual rectangular wave guide) is suitable for
transmission with negligible loss when using the T'Eqy(
and the TM,,; modes. Therefore, Bethe's diffraction

theory of small holes is believed to be useful at least
up to this dimension,

5. The Design Problems

The design problems for the 3-mode filter will be
discussed in detail to bring out the important point of
frequency correction due to screws and irises, and the
modification of the actual dimensions of the cavity to
account for them.

First we take one of the two identical TE;,/’s, in
Eq. (31); let ‘

I=ps/2y—e(ry/2x), (52
where ¢ is a2 small dimensionless number, then we have
e=—1/by. (53)

When &, is negative or when the iris is inductive, l is
less than p half-wavelengths. In our existing problem,
the cavity is also coupled through a hole to a second
rectangular guide whose broad face has been turned
90° with respect to that of the first guide. Therefore,
the former guide is called upon to propagate the mode
TE,, instead of the dominant TE), mode; and there-
fore, as this second hole introduces only a small per-
turbation effect, we can then assume 5.5>b,. For the
same reason, the twe holes on the end plates and the
two screws produce only perturbation effect to the
T Mgy, mode. Thus, for both the TEy;; and the TA gy,
the corrected frequency is (there is only one per-
turbation hole to each of the two TEyy modes)

wi=wp[ 1+4(m+Ci)] i=1,2---, (54)

with

m,;f (H—-ENdi= 3, (H—ENVg.,

=2 P hotes(MH = PE}),

when the holes and the screws are small, and, conse-
quently, the fields are nearly constant over the holes
and the screws. Here H, and E; are the normalized
fields to be evaluated at the holes and at the screws;
Al and P are given by Bethe as 4/3(3J)* and (3d)%,
respectively.

Thus, for either of the two TEy,, and tor the T34,
we have, respectively,

mut+Cu= (16.8/ VYN, (Vo 10)+ (&/16)1,
ot Coa= (1/V) {2V, ~0.5738) (55)
=2.5k—(0.0182/R|b]).

From these equations we find the relative detuning
between the TEy and TMqy, recalling that A=2.61q,
Ao=2=104q,

2w/w= (m+Cn)—(matCun), (36)
dw/w=(1/2V)§{0.6034~1.296V,],
dw/w= —0.778k+(0.0096/ 5| R),

where R is in inches. To correct for this small detuning,
we can lengthen the cavity slightly to decrease the
resonant frequency of the TE,;; mode. The change ir.
length does not change that of the TM o1 mode. If we
take J=1), originally, then we have

difl=— WAV (do/wy= —24(bwfw);  (38)
and the final length of the cavity is
F= [ 14 (1/76)+2.4(80/w)], (59

&)
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where
b= (ka(”/j}‘v(a))by

dwfw=—0.778++(0.0096/ 5! R).

For the case of the 5-mode filter, (43) gives the dis-
continuity susceptance between the TEy; in the input
or output line and the TAf;s mode in the cavity.

We next will find the change of the natural wave-
length of the mode TAf 1. The condition for resonance
is: the total admittance at r=r.40 (locking into the
iris) should be zero. And we have

y+3b6:;=0, (60)

where y is the relative input admittance at r=r;, of 2
radial transmission line open-circuited at r=0, and y is
given by?

y=— LI (kn)/ 15(kn)] (61)

or, substituting in Eq. (60), we have

.,1[2#?,’)\] 1

J;'[?rrr,’)\] b[‘

To solve for 7'\ we introduce a small dimensionless
number e. We put

ra=(7.02/2x)\[14(¢/7.02)], (62)
and we have
JU(T024 &/ TV (1.024 &) =+1/bs. (63)

Taking the Taylor series expansion of the bessel func-
tions of the first order, at the neighborhood of the
second root 7.02, for small values of ¢, we have

e=1/(5,—1/7.02). (64)

Having corrected the radius 7, for the T 150 mode,
we have to adjust the length in order to make the
modes TM;; and TEg in tune with the former mode.
Tods this, we ta.ke, for the TM 1, and the TEnll,

A=2x[(3.832 @)+ (x*/F) ], (63)
and to make AA=0, wemust have

Al=(3.832/r)*(P/d")Aa
or (66)
Al/l=(3.832 %)¥l/a)*(0a/a).

However, for each mode there is still the frequency
change due to the perturbation screws and one or two
perturbation holes. Thus, for the T 12 there are four
screws and one hole. For both the 7M1 and TEou
there are four screws and two holes. The fractional fre-
quency changes of the three modes TM s, TM 1y, and
TEs1 are therefore, respectively, as follows:

(6@,/(0)) 1= 0.525kx:+0.m65k2:,
(8w/w)s=0.128k;:40.5 1k — (0.0326/[5]), (67)
(bwjw)s = +0.24ksrt (0.0022/[5]).

When examined in this form, the fractional fre-
quency changes, Egs. (67), are seen to tend to be posi-
tive for the TM 2 and the TEo modes, but negative
for the Thf1, mode. By shortening the length of the
cavity, the resonant frequencies of the TM 1 and the
TE,,, modes can be raised toward that of the T3 1s.

¥ Montgomery, Dicke, and Purcell, Principles of Microuove
Cireails (MzGraw-Hill Book Company, Inc, New York, 1948),
M. L. T. Radiation Laboratory Series, Vol. 8.
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Thus, if we take
Al/l=— (2N (Aw/w), (68)
where Aw/w is taken as
Aw/w= (dw/w)1—4{(w, @)t (8w w)a],  (69)

the three modes are brought closer together.
The final dimension of this 3-mode filter is given as
follows:

D= (7.016/x) A+ (e 7.02)],
1=0.2673 D[ 140 0606¢— (21 N)*(Aw/w) .

YU}

The only problem which remains to be solved now is
to ind the value of b, from the lumped circuit equivalent
prototype structure. Now Jooking into the cavity from
the rectangular guide, the actual value of the open-
circuited admittance is

Bu= }',(kr){b_l-[J{(Izr)/]l(kr)];, k=2x/x (71)
The slope of By, at its zero, after being simplified by
putting in {61), is

dBy/dw! we=Y . (ka)(7.028/ w,). (72)

If now we take the first equation of (33}, and then sub-
stitute the value of X, given by (13), remembering the
normalization condition (33), we have

b= {(wo/)(2C,1.016)}{ Y TE/ Y}, (73)

where wp/w is ratio of the mid-frequency to the band
width, C is given in the prototype structure, and 7.02
is the second root of J,(x}. ‘

6. Experimental Models

Filter Xo. I. A 2Z-mode filter, a single coupling screw,
Ko. 4/40, wo/w=400, «:=9375 mc, A=3.20 cm=1.26
in., D=14% in., pass-band tolerance 3 db, R=0.172,
Ci=3.140 (Eq. (17)) jb: =14.95 (Eq. (36)), i (di-
ameter of the input and output iris)=0.319 in. (Eq.
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Fic. 12. Schematic experimental setup.

(42)), 1=1.005 in. (Eq. (32)), k=009t V./V (v,
volume of the coupling screw, Eq. (10)), k=1.92
X107 (Eq. (38)).

Filter No. 2. A 3-mode filter, A=3.20 ¢, wo,'zw =400,
wo=9373 mc, pass-band tolerance 1 db, D=0.963 in.
(point A, Fig. 1), L.=1, (1=2 (Eq. (19)), k=177
X 1073, |,} =13.3, d=0327 in., 1=0.995 in. (Eq. (59)).

Filter No. 3. A 5-mode filter, A\=3.20 cm, wof/w=454,
w=20.7 mc, D=2.790 in., {=0.735 in. (Eq. (70)),
|84 =16.56 (Eq. (73)), Ci=Cs=2.1186, Ca=2.9698,
L.=10961 (Fig. 9), k= 5= 143X 1073, kay=ka,
=1.220X10-3 (Eq. (38)), k1:=3.85V\/V, kz3=1.132V/
V (Egs. (11), (12)), d=0382 in. (Eq. (43)).

7. Measurements

In the experimental setup of Fig. 12, and H-plane



