AL

B KEIXRANKBEENER

B % H M

i 8Ll 3% iE X &

W& mE m

1985 4 - Jb %

HHN TR EEE
T
BRKFHXRARKESRE S

W oH H B m B R
ERERFH XD 36)

FEBELRRTART
B E R CFER R T BRI

787> 1092 K 1/32 5%/, Higk 131 FF
1978 6 A1 M 1985 % 2 Fish 2 REDRY
M, -33,100~ M
%~—4H%5, 9017 - 853 Eths 0.78 T

I N

| N T N T NS T N S N S N R S S e el o e
PEON S rLN D

. The Concept of Fault-tolerant Computmg

CONTENTS

Terminology .cocvvveivi it
Translators ..ooe. vt ove i e i e e eas
Assembly Languages.......cooveieiiiiiiiiiiiiiiiiiiiini,
L0711 31 L] o J P
Interpreters. .oovviiiiiiiiiit it i i e
Testing Programs at the Console..........c..oooevviennn..
OptMIZAtIoON. .. cciviiiii i e
Levels of Integrated-circuit Complexity.................
Large-scale Integration Examples..................... ...,
Semiconductor and Plated-wire Memories..............

. Vector Supercomputers.......coovveviiviiiiiiiiiiiiienninnn,

Microprogramming and its Definition...................
Lsi and Microprogramming...........ccocoieiiniiiiian.n.
Micro-minijaturization a Dialogue.........................

. The Invisible Computer........cccovuvniviiieniniininnionn.

Hierarchy of Programming Languages...................

. Translation among Programming Languages...........
...67

Universal Processors..

Mass Storage—future Trends..........cooeiviiiiieiiin,
Development of the Stored Program Concept.........

. The Virtual StOrage.....cccceieviviiiuiinmiienaaeiiiniioninns
. The Virtual Machine..................

On-line Real-time Systems........c.ccieveiiiivvreninenenn.
Operator Precedence........coevveiuiiniiiiiiiiiennennne.

11
15
18
22
26
29
33
3
41
46
50
54
59

71
74

83

..87

91

...96

26.
27.
28.
29.
30.

Parsing ...ovieviieiieiiiiiiiiiin e i e, 100

Errors—detection and Correction...............cccuee... 105
Time Sharingccccooovivviiiiiiniiiiiinnene . 109
Optical Character Recogmtlon115
Achieving a Fast Data-transfer Rate by Optlmlzmg
Existing Technology ...c...coooiiiiiiiiiiineeeeenrannnn. 121
X

1. TERMINOLOGY

A translator is a software system that transforms the
statements of one computer language into statements in some
other computer language.® The first language is usually called
the source language; the second language may be called the
object language, target language, machine language, or some
other descriptive name.

A computer is a translator that transforms a high-level
(or problem-oriented) language such as ALGOL or PL/I into
a low-level language such as assembly language or machine
language. An incremental compiler translates statements of
a language, one statement at a time.@ This is in contrast to
the usual case where the whole program is input to the compiler,
which then makes several passes before emitting code.® In-
cremental compilers are generally used in interactive or terminal-
oriented environments wherein the user interests with the com-
puter directly via a keyboard, console, display unit, or other
such device.®@

An interpreter is a program that instead of translating source
code executes it directly by determining the meaning of each
statement or part of a statement as it is encountered and by
computing its value or generating its effect (e.g.,input/output).®

-t

The syntax of a language is the set of formal rules which’

describes its form:® how statements may be formed, which
constructs are legal, the order in which statements must occur,®
and so forth.

The semantics of a statement is its meaning, including what
values are to be computed, the code necessary to compute them,.
and any side effects that are to occur, such as input, output,
and setting internal switches.®

A single formal rule of a syntax is called a production.

A grammer is the set of productions describing some lan-
guage plus the set of symbols used in the productions.®

Parsing is the process of determining which productions
are used in the construction of a sentence of a language; a
program that performs this process is called a parser. More
formal definitions of these concepts may be found in Ginsburg,
The Mathematical Theory of Context-Free Languages.

A compiler-compiler is a translator to which input is a
source language describing a compiler for some language®
and which as output gives a program that is a compiler for that
language. ' A meta compiler is a translator that translates.
high-level language to some other language (also possibly high-
level). The difference between compiler-compilers and meta
compilers is not very distinct, nor is this terminology adhered.
to strictly.®

ig) iC

terminology [ta:mi'noladsi}l n. K legal [izgol] a. & %8y

i semantics [si‘mantiks] 7. iE S
target ['ta:git] #. Hiz; #54 plus [plas] prep. jm.im
descriptive [dis'kriptiv] a. #§Rf; parse [pa:z] vt. A){E45rHT

By parser ['pa:za] n. LY HEE
incremental [inkri'mentl] a. & Ginsburg (A &)

) theory ['Oidri] n. Wi
wherein [wea'rin] ad. ZEARB; I meta ['meta] G (i R Er)

HiE strictly ['striktli] ad. j™#ih

console ['konsaul} n. B4#l&

2

| iE

in contrast to 5.3tk 5o W H and so forth %%
instead of Wi A A& (to) adhere to %1%

® ® 8 6 ©

Qe

®

F B

ATEiAMiE in some other computer language 2%, %1% statements,
in X R LHES, 2 in English (FI%%IE).,

4iMKiiE one statement at a time fERIE, B MHIEIEDIE
translates,,

AL, M where BI£5K R EE M4, {81 the usual case, HH XA
& — e F Yk M4 A which B3, #ifi the computer,
wherein the user ... or other such device 2 H1(F&EIiA wherein 3
HEvEiEM A, B environments,,

fFAGY,) that B2 EIEM, 1% a program, Hp, XAERI
that &EiE,HiEzhiAdRE executes, [ijE 4 E instead of translating
source code {EiRiE, &M executes, it 3§ source code, Hi4 g BRidE
i& by determining ... as it is encountered #1 by computing ...
(e.g., input/output) ¥R IE, 41815 executes, ¥ —A W BIALIE D,
as it is encountered & WH[ERIEMA], Bizh & determining, it 3§
source code,

its form = the form of the language.

417 47 how statements may be formed #1 which constructs are
legal LK 4174 jE the order ... occur ¥ B the set of formal rules
ME AL E. &iASFE the order ... occur X4 -/~ EiE M40 in which
statements must occur, 1% the order,

W 1E 4y M4 HE including ... internal switches i€ &, #&f% its meaning,
including =4 3%y 4218, 1) what values are to be computed;
2) &iA4iE the code...them, it necessary to compute them B
AiAEIE, & code, them # values;, 3) £&id4i%any side effects...
switches, M:#h that are to occur Z4ZiEMM, £ any side effects,
such as input, output FI setting internal switches £ — i8] any
side effects iy, 5 R,

plus ... productions £ 3f 274 1E, BN E K the set of productions,
Jh used in the productions £ 35itd:s HEIE, B the set of sym-

3

bols.

W B iA4GiE for some language fEEIE, #1H a compiler,

i FEEMA which as output ... language i E PRI AE a
translator .,

(» nor is this terminology adhered to strictly R@$dy, SUAZMHE M
T nor, ix# %+ the terminology is not adhered to suictly either,
Sk adhere to B —AERAES, By AT AIEREAYEE
A, g AW to 20

2. TRANSLATORS

fost programming today is in a language different from
machine language.® We say that the program is in machine
language when it can be fed directly into the computer, where
the loader places it in memory and it is ready to run. @ A source
language program requires one or more stages of translaticn
to produce the machine language program.
Source Languages
The programmer usually writes in a source language. We
distinguish several kinds of source languages according to their
use.
Assembly Language
Assembly language provides commands which are very
close to machine-language commands, and it falls into the three
categories which will be discussed. The mnemonic language
is an assembly language. Other extant assembly languages
for IBM machines include FAP and SOS; Univac assembly
languages include UTMOST and ALMOST.
POLs
The programmer is provided with languages which convey
information in a manner similar to that in which he normally
expresses himself in writing out his algebraic or business pro-
blem.® These are called procedure oriented languages, ab-
breviated occasionally as POLs.& They include FORTRAN,
ALGOL, and COBOL. These are also called compiler lan-
guages after the programming system which translates them,

5

the compiler.®
Problem Oriented
Problem oriented languages are aimed at stating a problem
for which a general solution has already been programmed.&
The Report Generator Language enables us to state the design
of a given report;D the Sort Generator allows us to communi-
cate the nature and forma of records to be sorted.®
Special
Special languages are structured for the statement of special
kinds of problems.® A System Simulator Language is designed
to state the properties of a system which is being simulated on
the computer.sé IPL-V (Information Processing Language
Number Five) is designed to express problems which simulate

human thinking.
&

feed [fi:d] vr. & A

(fed [fed], fed [fed])
category [ketigori] n. F
mnemonic [ni(:)'monik] z. 247

W WAL
extant [eks'tzent] . BEH
Univac = Universal Automatic

i

(to be) different from 5---[F
(to be) ready to (T ERFFS) M
#

E

iC
Computer i Fl#8 7 ¥ it B#l
(HENLRS A)

convey [kan'veil vt. {53k, 5
algebraic [@ldzi'breiik] a. ¥ H
abbreviate [>' bri:vieit] vi. 5
sort [so:t] vr. d3---43%

simulate ['simjuleit} vz. B

=
(to be) close to ¥3ET

in a manner similar to

MR

"

AT

@ in a language ... language 2 71E H4EIE, fE#IE, 180 Most program-
ming, 3, ERIAEE different from machine language fEEIE,

@

®

€20

#it a language.

when it can be fed ... to run EpjERIEMT, BiEEH0IBIEDRA
say, that the program is in machine language & say {HiEiZEMNA),
where the foader ... to run BIEPREIME BN 4D, &5 the computer,
A it #45 the program,

M which convey F|&&ik £ 215 MWA), &1k languages, K, in a man-
ner FI&EREAE RS E, ERIE, #1815 convey, TEXH BIRA
B, LA —AHATFIEE similar to that ... in which ... business
problem, {EEi&, W a manner, X EIANEIES, that $5 the
manner, in which &3 L IEMN4, EiF that,

abbreviated occasionally as POLs &3t 34584018, 7EIER &4 215,
&1 procedure oriented languages, 3}, as POLs 2FENEIE, b
J2 abbreviated RyF i iE, Bl procedure oriented languages,

after the programming system ... the compiler &5 8458, fE 5 A
RiE,EWMIBIESNIE are called, #E A after X2 0., kI HE
B Exw B iEEEd, H—4EiEMNE which translates them, &1
the programming system; the compiler & the programming system
[l R mAE

for which ... programmed 2 :igiE M), MW a problem,

AERKIE to state the design of a given report {ERiE,

B EARA EiA to be sorted fEEIE, i records,

{£ the statement ... problems i, the statement % special kinds of
problems 7EE#® LEHTALF, B of &,

which is being simulated on the computer £ Eif M4, &M a sys-
tem, XAPEENARBERGFHE BIIEE,

3. ASSEMBLY LANGUAGES

We distinguish three kinds of assembly language:
absolute assembly language AAL
symbolic assembly language SAL
macro assembly language MAL
Absolute assembly language
Early FLAP, introduced in Chapter 2,® is an example of
an absolute assembly language. It differs in only two ways
from actual machine language:
+ A mnemonic — a set of letters — is substituted for
the binary command code.
« A letter or number code is used for a memory cell
instead of the binary representation of this code.®
AAl is a shorthand notation for machine language com-
mands. These are translated to machine language by a very
simple assembler. No storage allocation is done.
Symbolic assembly language
A symbolic assembly language is discussed in Chapter
5 and is exemplified by Middle FLAP. In this language. the
location of data is denoted symbolically and need not be allo-
cated by the programmer. The assembler does the full alloca-
tion of storage and keeps track of all memory cells. The SAL
can also deal with arrays and provide address modification by
addition and subtraction.
Macro assembly language
Most notably, the macro assembly language permits the

programmer to define and name a subroutine and then to call
it forth any place in the program that he desires.®

AL — POL Contrast

The absolute assembly language has the characteristic that
each source language command is represented by exactly one
machine language command.® Symbolic assembly language
introduces pseudos present in source language but absent from
machine language.® The macro assembly language introduces
strings of commands in the macro definition which are entirely
absent from the machine language translation.® 1t also intro-
duces single macro commands which are replaced in translations
by a string of machine language commands. Despite these
variations a pattern is evident: most assembly language transla-
tions present a one-to-one structure — one machine language
command for one source language command. When the stru-
cture is violated, the sequence of machine language commands
is evident in the source language problem statement.

For the procedure oriented language one source language
statement is usually translated into many machine language
statements. More important,? the sequence of statements
produced® is a function of the POL compiler and the object
machine, and is not at all evident in the source language sta-

tements.
Summary

The most important differences between the AL and POL
are:
« A sequence of machine language steps is nowhere im-
plied in the POL.
« The one-to-many characteristic is customary in the
compiler whereas in the assembler it is an exception.

9

i
binary ['bainori] a. R
shorthand [' fortheend] . Fid
exemplify [ig'zemplifai] ve. B3R
B BN - BT
modification [\modifi'keifon] 2. &
M B
macro [*mzkrou) 3=, Xk (MR B
notably ['noutabli} ad. E¥Hh; ¥
A4

=

(10) differ from T RET; 5 FIX
-l
(to be) absent from FfE-- (#F);

&

iC

pseudo ['(p)s(jlu:dau] 45,3, B (#
W) n. thigd

violate ['vaioleit] vz. $%EL; B 3E
k1

nowhere [‘nouhweo] ad. {EfAE

B
customary ['kastomori] a. i,

BEE

)

f---
not at all A4

L

®&® e

s 4y @45 introduced in Chapter 2 fE& 8, &% Farly FLAP,
instead of ... code BT iIAMIE, (HRIE, BHIFIEZIA is used,
ZHAAh TEX4E1E to define and name a subroutine #1 then to
call it forth ... desires 57 iE the programmer —RHR T HAKIE.
7£ then to call ... desires XA~ A ZX 4 iEH, any place in the pro-
gram that he desires & 4 KIE, EHARIE, B call it forth,
wh, that he desires & &iEMN4), &1 any place,

that ... one machine language command Jj%5 characteristic [EfL#
R B EM AT,

present in source language ®l absent from machine language £
AHEIAEE, & pseudos,

%% M 47 which are ... translation 215§ strings of commands
M,

more important fERIE, BHHELEEAHBS T,

produced Rif3:4rial, 84 the sequence of statements,

®@e ® © ®

4. COMPILERS

Compiler is the part of the programming system that trans-
lates programs from their original language into machine langu-
age. Compilers are often classified as one pass, two pass, three
pass compilers and so on.® These are terms which are most®
relevant in cases where the program is large compared with
the internal storage system,® so that the entire program cannot
be held within the machine while it is being translated from
source to machine language. What one usually does then
is to keep it on magnetic tape and simply scan it repeatedly,
performing a further translation on it at each stage,® and the
number of times that it has to be scanned in order to get the
complete translation done® is called the number of passes.

This term might also be applicable in cases where it is not
necessary to keep it on the magnetic tape,® because there is
room for the whole program inside the machine. Even then
a compiler may be organized in such a way that it scans through
the program being interpreted from beginning to end (or from
end to beginning) a certain number of times,® and it may still
be described as a two, or a three or a four pass compiler. But
many compilers do not work in this kind of way.

If a compiler does make a clear number of passes, then
obviously in between® two passes the program is still there
in some form or other; in fact, it is in an intermediate language,
between the source language and the final language.

Another is the langauge in which the compiler itself is writ-

11

ten.® Compilers are such enormous things that eme rarely
writes them in machine language any more,4 and one can choose,
in the same way as in the writing of any program,® between
various possible languages in which it might be written. It
is important to distinguish between the language in which a
compiler is written, and the languages to which, through which,
and from which it compiles.® It may happen in some cases
that the language from which it compiles is the same as the lan-
guage in which the compiler itself is written,®but this is not
necessarily so.

Tn considering the best language in which to write a compi-
ler,® we are effectively considering a system designed to accept
compilers, i.e. a system to which the compiler itself acts as
data.® The purpose of this data is to select the required com-
piler from among conceivable compilers (i.e. compilers which
accept various source languages or produce various machine
languages), and so really what we want to be able to write as
our compiler® is simply a definition of the source language or

- of the machine language or both. We want to have a system
into which we could feed, for example, a definition of a source
language,® so that having supplied that definition we would
now have an effective compiling system into which we could feed
the source language itself.

In fact what this system has to accept is what mathemati-
cians call a meta-language, that is a language which is used for
describing languages. This kind of approach has been explored
by several people. Various kinds of meta-languages have been
devised, and various means for building systems that will accept
these languages.

Another aspect of compilers is the question of diagnostics:

12

