RETENBELE (REDAR)

SECOND EDITION

THE

ANSWER BOOK

Solutions to the Exercises in
The C Programming Language,second edition

by Brian W. Kernighan & Dennis M. Ritchie

c*ir 'H"lrl:l = (&)
=) @0 R 5

(B—hR)

CLOVIS L.TONDO SCOTTE. GIMPEL

i%‘ﬁ%ﬂﬂi . PRENTICE HALL

L
eg'»‘%?

The

C

Answer Book
Second Edition

Solutions to the Exercises in
The C Programming Language, Second Edition
by Brian W. Kernighan and Dennis M. Ritchie

 CERZITES (EZhD

jmﬁﬁﬂ
{ (%Jﬁ)

zClovrs L, Tmido
Sgott E/Gn;ipel

\\||\\\|N\||\\\|\||H\\\\Il|||\\\\\|||\W\II\

Prentice-Hall International, Inc.

/

The C answer book: solutions to“the exeréises in The C programming lan-

(FOHEF 1585

guage, second edition, by Brian W. Kernighan and Dennis M. Ritchie/
Colvis L. Tondo, Scott E. Gimpel. —2nd ed.

€1989 by PTR Prentice Hall,

Original edition published by prentice Hall, Inc. , a Simon & Schuster Com-
pany.

Prentice Hall 4 88U K% WAL R EE N CRaE S EEF BT
X BTHEERRO MR BRETEBERE.

EHFEABLRNE RELEEPEHRE. ABAEAMFRADE. TREH
B,

FBHEHSA Prentice Hall AP HIFE . THEETBHUE.

bR AT AL R E A R B2 S . 01—97—1275

B-BEERA ccIiP) KB

CEFRIES BB JBRE . HKX/(FH X (Tondo,C. L), ()&
JU/R (Gimpel ,S.E ¥ . — BEIM . — b3 84K 2 1 B3 ,1997. 11
(KETHENHEELAD

ISBN 7-302-02728-5

1.C 1.0%~ @&~ 1.CHT-BERT-HE V. TP312-44

o R A B 45 18 CIP 304 F (97) 4B 23936 &

WA : 4 K% R AU E S RER A, B4 100084)
4% Wtk . www. tup. tsinghua. edu. cn

EURIE . W4 KRR

ETE: FHEBEBEARBERITH

FF A 850X 1168 1/32 ENFK: 6.75

R K. 1997 11 A 1R 19984 7 A% 2 KEDRI
$ 5. ISBN 7-302-02728-5/TP » 1414

Bl ¥. 5001~10000

£ Wr.12.007T

mif

t AR Al

BV EE BFRAERLE, BEAHR—TEERLHER
R A TH T B R B R KB/ CBRL S A E NS
E R F R AR IE S R /EES & LERSWHIZ. 1B
B TS IR E 5 B SNEAT#FT O 55 45 3K 3 H 6
HERNEEHRE, BTN HRERBAE RIS CIRRBE BN
BB BT, EERHEB WA REZERFRNTEH—
ZHE T BN ENLBRBF R, R, EXRAPERET
IR R A R EoR A R’ % LR S,
AL IR TIERREE ETHETFTRA —EH
B AENEXFRBREMEABESZER AMEXHTAMNTE,
FMPIET 7 AT BHUR2E 7 T BB RA R 06, 347 R B H I
BHEEERMN 6 A BZRT KEHFHRFR, RITRZH5E,
SIE KR ER BT, FEEERSES T KIS FF. Prentice
Hall 2> &]F1 4k 2 AR AL 30K & 15 1 B B 56 1 K7 9 B8 51
AREREER, AW ANRETHERS HESMNEREM N
B BURMIRE .

HERZE WA

Prentice Hall 24 #]

1997.11

Preface

This is an ANSWER BOOK. It provides solutions to all the exercises in The
C Programming Language, second edition, by Brian W. Kernighan and Dennis
M. Ritchie (Prentice Hall, 1988)*.

The American National Standards Institute (ANSI) produced the ANSI
standard for C and K&R modified the first edition of The C Programming
Language. We have rewritten the solutions to conform to both the ANSI
standard and the second edition of K&R.

Careful study of The C Answer Book, second edition. used in conjunction
with K&R, will help you understand C and teach you good C programming
skills. Use K&R to learn C, work the exercises, then study the solutions pre-
sented here. We built our solutions using the language constructions known at
the time the exercises appear in K&R. The intent is to follow the pace of K&R.
Later, when you learn more about the C language, you will be able to provide
possibly better solutions. For example. until the statement

if (expression)
statement-1

else
statement-2

is explained on page 21 of K&R, we do not use it. However, you could improve
the solutions to Exercises 1-8, 1-9, and 1-10 (page 20 K&R) by using it. At
times we also present unconstrained solutions.

We explain the solutions. We presume you have read the material in
K&R up to the exercise. We try not to repeat K&R | but describe the highlights
of each solution.

You cannot learn a programming language by only reading the language
constructions. It also requires programming — writing your own code and study-

*Hereafter referred to as K&R.

ing that of others. We use good features of the language. modularize our code,
make extensive use of library routines, and format our programs to help you
see the logical flow. We hope this book helps you become proficient in C.

We thank the friends that heiped us to produce this second edition: Brian
Kernighan, Don Kostuch, Bruce Leung, Steve Mackey, Joan Magrabi, Julia
Mistrello, Rosemary Morrissey, Andrew Nathanson, Sophie Papanikolaou,
Dave Perlin, Carlos Tondo, John Wait, and Eden Yount.

Clovis L. Tondo

Contents

Preface v
Chapter 1. A Tutorial Introduction 1
Chapter 2. Types, Operators, and Expressions 43
Chapter 3. Control Flow 59
Chapter 4. Functions and Program Structure 69
Chapter 5. Pointers and Arrays 97
Chapter 6. Structures 151
Chapter 7. Input and Output 168
Chapter 8. The UNIX System Interface 188

Index 203

cHAPTER 1 A Tutorial Introduction

Exercise 1-1: (page 8 K&R)

Run the “*hello, world" program on your system. Experiment with leaving
out parts of the program to see what error messages you get.

#include <stdio.h>

main()
{
printf(*hello, wor 1d");

In this example the newline character (\n) is missing. This leaves the cursor
at the end of the line.

#include <stdio.h>

mai1n()
{
printf(*hello, world\n")

¥

In the second example the semicolon is missing after printf¢). Individual C
statements are terminated by semicolons (page 10 K&R). The compiler should
recognize that the semicolon is missing and print the appropriate message.

#1nclude <stdio.h>
main()

{
printf("hello, world\n’);

2 The C Answer Book

In the third example the double quote * after \n is mistyped as a single quote.
The single quote, along with the right parenthesis and the semicolon, is taken
as part of the string. The compiler should recognize this as an error and com-
plain that a double quote is missing, that a right parenthesis is missing before
a right brace, the string is too long, or that there is a newline character in a
string.

A Tutorial Introduction Chap. 1 3
Exercise 1-2: (page 8 K&R)

Experiment to find out what happens when printf’s argument string contains
\c, where c is some character not listed above.

#include <stdic.h>

main()

{
printf(”hello, world\y");
printf(*hello, world\7");
printf(*hello, world\?");

The Reference Manual {(Appendix A, page 193 K&R) states

If the character following the \ is not one of those specified, the behavior
is undefined.

The result of this experiment is compiler dependent. One possible result might
be

hello, worldyhello, wor ld<BELL>hello, world?
where ¢BELL> is a short beep produced by ASCII 7. It is possible to have &

\ followed by up to three octal digits (page 37 K&R) to represent a character.
\7 is specified to be a short beep in the ASCII character set.

4 The C Answer Book
Exercise 1-3: (page 13 K&R)

Modify the temperature conversion program to print a heading above the table.
#include <stdio.h>

/* print fahrenheit-Celsius table
for fahr = 0, 20, . . ., 300; floating-point version ¢/
main()
{
float fahr, celsius;
int lower, upper, step;

lower = G; /+ lower limit of temperature table */
upper = 300; /¢ upper limit ./
step = 20; /+ step size ./

printf(“Fahr Celsius\n");

fahr = lowar;

while (fahr <= upper) {
celsius = (5.0/9.0) » (fahr-32.0);
printf(*%3.0f %6.1f\n", fahr, celsius);
fahr = fahr + step;

The addition of
printf("Fahr Celsius\n™);
before the loop produces a heading above the appropriate columns. We also

added two spaces between %3.0f and %6. 1 f to align the output with the head-
ing. The remainder of the program is the same as on page 12 K&R.

A Tutorial Introduction Chap. 1 5
Exercise 1-4: (page 13 K&R)
Write a program to print the corresponding Celsius to Fahrenheit table.

#include <stdio.h>

/* print Celsius-Fahrenheit table
for celsius = 0, 20, ..., 300; floating-point version =/
main()
{
float fahr, celsius;
int lower, upper, step;

lower = {; /% lower limit of temperature table +/
upper = 3003 /+ upper limit */
step = 20; /+ step size */

printf("Celsius Fahrin");

celsius = lower;

while (celsius <= upper) {
fahr = (9.0#celsius) /7 5.0 + 32.0;
printf(”%3.0f %6.1f\n", celsius, fahr);
celsjus =« celsius + step;

The program produces a table containing temperatures in degrees Celsius (0~
300) and their equivalent Fahrenheit values, Degrees Fahrenheit are calculated
using the statement:

fahr = (9.D*celsius) / 5.0 + 32.0

The solution follows the same logic as used in the program that prints the
Fahrenheit-Celsius table (page 12 K&R). The integer variables lowar, upper,
and step refer to the lower limit, upper limit, and step size of the variable
celsius, respectively. The variable celsius is initialized to the lower limit,
and inside the while loop the equivalent Fahrenheit temperature is calculated.
The program prints Celsius and Fahrenheit and increments the variable celsius
by the step size. The while loop repeats until the variable celsius exceeds
its upper limit.

6 The C Answer Book
Exercise 1-5: (page 14 K&R)

Modify the temperature conversion program to print the table in reverse order,
that is, from 300 degrees to 0.

#include <stdio.h>
/+ print Fahrenheit-Celsius table in reverse order »/
main{}
{
int fahr;
for (fahr = 300; fahr >= 0; fahr = fahr - 20)
printf("%3d %6.1f\n", fahr, (5.0/9.0)+(fahr-32));
The only modification is:
for (fahr = 300; fahr >= 0; fahr = fahr - 20)
The first part of the for statement,

fahr = 300

initializes the Fahrenheit variable (fahr) to its upper limit. The second part,
or the condition that controls the for loop,

fahr >= 0

tests whether the Fahrenheit variable exceeds or meets its lower limit. The
for loop continues as long as the statement is true. The step expression,

fahr s fahr - 20

decrements the Fahrenheit variable by the step size.

A Tutorial Introduction Chap. 1 7
Exercise 1-6: (page 17 K&R)
Verify that the expression getchar¢) != EOF isQor 1.
#include <stdio.h>
mainC)
{

int ¢,

while (c = getchar() != EOF)

printf("id\n", c);

printf("i%d - at EQF\n", c);
The expression
c = getchar() != EOF
is equivalent to
¢ = (getchar() !'= EOF)
(page 17 K&R). The program reads characters from the standard input and
uses the expression above. While getchar has a character to read it does not
return the end of file and

getchar() != EOF

is true. So 1 is assigned to c. 'When the program cncounters the end of file,
the expression is false. Then () is assigned to c¢ and the loop terminates.

8 The C Answer Book
Exercise 1-7: (page 17 K&R)

Write a program 1o print the value of EOF.

#include ¢stdio.h>

main()

1

printf(*EODF is Xd\n®, EOF);
}

The symbolic constant EOF is defined in ¢stdio.h>. The EOF outside the
double quotes in printf() is replaced by whatever text follows

sdefine EOF
in the include file. In our system EOF is —1, but it may vary from system to

system. That’s why standard symbolic constants like E0F help make your pro-
gram portable.

A Tutorial Introduction Chap. 1

Exercise 1-8: (page 20 K&R)

Write a program to count blanks, tabs, and newlines.
#include <stdio.h>

/% count blanks, tabs, and newlines
main()

{
int ¢, nb, nt, nl;

nb = 0% /+ number of blanks
nt = 0; /+ number of tabs
nl = 03 /+ number of newlines

while (Cc = getchar()) !'=EQF) {
if (¢ ==)
++nb;
1f (c == *\t’)
rent;
1f Cc == “\n’)
++nl;
}
praintf("%d %Xd %d\n", nb, nt, nl);

The integer variables nb, nt, and n1 are used to count the number of blanks,
tabs, and newlines, respectively. Initially, these three variables are set equal

to 0.

Inside the body of the whi1e loop, the occurrence of each blank, tab, and
newline from input is recorded. All if statements are executed each time
through the loop. If the character received is anything but a blank. tab. or
newline, then no action is taken. Ifit is one of these three, then the appropriate
counter is incremented. The program prints the results when the whi le loop

terminates (getchar returns £0F).

¢/

/
+/
+/

10 The C Answer Book

The 1 f-else statement is not presented until page 21 K&R. With that
knowledge the solution could be:

#include <stdio.h>

/* count blanks, tabs, and newlines ./
main()
{

int ¢, nb, nt, nl;

nb = 0; /+* number of blanks */
nt = 0; /+ number of tabs ./
nl = 0; /+ number of newlines ./

while ((c = getchar()> !'=£0F)
if (¢ == ¢ *)
Q’nb;
else 1f (c == ’\t‘)
++nt;
else if (c == ‘\n‘)
+enl;
printf("Xd %d Xd\n"“, nb, nt, nl);

