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Preface

In recent years the research in Fourier Analysis and Approxima-
tion Theory has been extended from the classical setting, i.e., from
the investigation on R™ and T, respectively, to the investigation on
manifolds. Nikol’skii has published a series of papers in this respect.
The unit sphere

Qn::{(xlv"'axn)eRn:x%+"'+x121:1}’ n 22,

is a typical manifold in R". Fourier analysis on (,, is also called
Fourier-Laplace analysis since the Laplace-Beltrami operator takes
an important role in almost all problems. When n = 2, we have
22 = T and get back to the classical case.

The investigation of Fourier-Laplace analysis has already a long
history. The earliest research papers may have been published at the
beginning of the 20th century. A basic lecture note is the one by C.
Miiller. There were also important papers we would like to point out.
In 1968 Berens, Butzer and Pawelke studied basic approximation and
saturation problems on the sphere. In 1973 Bonami and Clerc estab-
lished important theorems on the convergence of Cesiro means of
Fourier-Laplace series. Since 1980 the approximation of functions on
the sphere has become an even more active field with the publication
of the papers by Nikol’skii, Lizorkin, Kamzolov and others.

Why do analysts pay more attention to Q,, recently? Here are two
reasons. Firstly, although classical Fourier analysis on Q5 is getting
more and more complete, quite a few problems on 2, for n > 3 are
still left open. Secondly, the research on the sphere is in demand by
practical problems in physics, geo%raphy, seismology, etc.
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Since 1990 Professor Sun Yongsheng has urged his group to do
research on the sphere, and under his guidance and encouragement his
students started the research on Fourier-Laplace analysis and related
problems on approximation. Since then the author’s research has been
supported by the NSF of China for the three periods, 1992~1994 (No.
19171008), 1995~1997 (19471007), and 1998~2000 (No.19771009).

The monograph is a summary of our research until 1998.

In order to make the book self- contained we wrote a prelimi-
nary first chapter. The second chapter provides basic knowledge on

. Fourier-Laplace series and some early research results.

In the third chapter, we present a kind of operators which are
equiconvergent with Cesaro means with the same orders. These oper-
ators are simply convolutions with Jacobi polynomials as kernels. So
it is convenient to investigate convergence problems with help of these
operators. Also these operators can be applied to investigate general
linear summability and strong summability of Fourier-Laplace series.

In the fourth chapter, we discuss how to describe the constructive
properties of functions defined on the sphere. Then in Chapter 5 we
give a detailed proof of Jackson inequality. This inequality says that
for any function defined on the sphere, the best approximation by
polynomials is dominated by its modulus of continuity. In LP metric
this inequality was established in 1987, but for L! and uniform metric
this problem has been keeping open until 1994 the first author of the
book and Riemenschneider found a constructive proof jointly.

In the last chapter, we discuss the problem of approximation by
linear means such as Riesz means, Cesaro means and de la Vallée
Poussin means.

The first five chapters are written originally by the first author
and have been served as the material for his seminars. The last chap-
ter (Chapter 6) is written by the second author.

We are sincerely grateful to our supervisor Professor Sun Yong
Sheng. We are also grateful to Professor H.Berens, Professor G.Brown,
Professor S.Riemenschneider and Professor Z.Ditzian. With them we
have been collaborating since long and our research gets their kind
concern and encouragement.

We thank the National Natural Science Foundation of China very
much for the financial support during 1992~2000. Also we thank the
China Talent Fund very much for the support to publish this book.
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Chapter 1
Preliminaries

The materials in the first two sections of this chapter are mostly taken
from the books [SW], [M] and [Sz]. As for the concept of convolution
of functions defined on the sphere we follow the argument in [D]. In
section 1.2 we give a very basic introduction on Jacobi polynomials
and particularly on Gegenbauer polynomials. We also introduce the
normalized Gegenbauer polynomials from the point of view of the
harmonic analysis on the sphere. This follows the argument in [M].
For a complete discussion on Jacobi polynomials we refer the reader
to Szegd’s famous book [Sz].

In the section 1.3 we will extend the Jacobi polynomials to the
case of complex indices and give for such polynomials some asymp-
totic estimates. The results of this section have been given in [BW).

1.1 Basic concepts

1.1.1 Definition of P, A} and HE

Let N denote the set of natural numbers and let R” (n € N) be the
n-dimensional Euclidean space with norm |z} := /22 + T3 -+ 22
for z = (1,292, --,z,) € R™. What we will treat with is complex
valued functions defined on R™. As usual we denote by A = A, the
Laplace operator, i.e.,

62 82 62

AEAH::— _ .
o2 o T o
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Suppose f is a function defined on R™. If f satisfies the Laplace
equation, i.e., A, f = 0, we say that f is harmonical. If for all o € C
and all z € R*,  flaz) = of f{r) with k € Z, = {0} UN. then we
say that f is homogeneous of degree £.

Definition 1.1.1 The set of all homogeneous polynomials of n
variables of degree k is written as PJ'. The subset of all harmonic
functions in P} is denoted by A}. An element of Al is called solid
spherical harmonic (see [SW, p.141]).

When n > 2 we denote by €2, the unit spherical surface of R™,
i.e.

Qn = {fz(flvagn) eR": €f++§f) :1}

Definition 1.1.2 Suppose f € A? (n > 2). The restriction of f
on {1, is called spherical harmonic of n variables of degree k. The set
of all such functions is denoted by H

It is obvious that A} and M} are all linear spaces over complex
scalar field C and they have the same dimension which is denoted by
ay. In order to find the value of a} we first consider the lincar space
Pit. We denote the dimension of P by di. Let P € P;'. Then P has
the following representation:

P(z) = Z cez® = (ap,.a,) € ZY, co € C.
(o) =k

where 2% = 27" .. 28" and (a) = a; + - -+ + «,. From this we can
deduce by induction on the dimensions that

n __ n—1 _(n+k-1)' A
dk_cn»l—}—k_m' (111)
We now prove the following lemma from which the relation of d;; and
a? will be derived.

Lemma 1.1.1 For any P ¢ P¢ (n > 2) there is a unique
decomposition:
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J4
P(z) = Z |z|% Py_oj(x), £= [g] : (1.1.2)
j=0

where Pk~2]‘ € AZ*2]' (J = 01 15' ’ 'wg)a and

¢

P=ap g (1.1.3)

7=0

Proof We introduce an inner product on P¢ by defining
<PQ>p=PD)Q, VP QeP,

where P(D) denotes the differential operator determined by P, while
D% is defined for any o € Z} by

oo o
D

= aar T poan
oxy! oz

It is easy to verify that (P}, < -,- > ) is a complete inner product
space. And the convergence in (P2, < -,- > ) is just equivalent to
the convergence of the coefficients of polynomials.

The cases & = 0 and k = 1 are trivial. We now assume k£ > 2 and
define for j > 2

B} = [zPiLy = {P(x) = [2]Q(z) : Q € P}_,}.

Obviously, B} is a closed subspace of P} with inner product < -,- >; .
We write BY as M temporarily. We are going to prove A;L is just the
orthogonal complement of M in P7.

Suppose P € P and R(z) = |z|?Q(z) € M. If < P,R >;=0
then

< R,P>;=AQ(D)P = Q(D)AP =< Q,AP >;_,=0,

where A = A,. If < Q,AP >;_2= 0 holds for all @ € ’P]’-‘_2 (G>2)
then AP = 0. Hence we know P € A;-‘. This means M+ ¢ .A;L.
Now let P € A? and R(z) = |[z|*Q(z) € M. Then

< PR > =< Q,AP >j2=0.
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So M+ D A7

We have proved M+ = = A7. Therefore by the orthogonal decom-
position theorem we deduce that for any P € Py (k > 2) there are
unique Py € A} and unique @ € P, such that

P(z) = Po(a) + |2*Q() (1.1.4)
and obviously (for k£ > 2)
v = dim AY +dim B} = af +di_,. (1.1.5)

By using (1.1.4) and (1.1.5) repeatedly for £ times we get (1.1.2) and
(1.1.3) and complete the proof. O

Observing that
df =ag =1 and df =af =n
and noticing (1.1.1) we get the following
Corollary 1.1.2 Let n > 2. Then

1, if k=0,
(n+k—3)!
ki(n —2)! "

ap = (1.1.6)

(n+ 2k —2) if kel

Also we deduce from Lemma 1.1.1 the following useful

Corollary 1.1.3 The restriction on §,, of any polynomial is just
a sum of some spherical harmonics.

1.1.2 L2%3(2,) (n > 2)
The space L?(f2,,) has naturally an inner product defined by
<fa>= [ 05 danlo) (117)

where dw, denotes the surface element of 2, and the letter £ in
connection with dw, means that the integration is carried out with
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respect to €. If no confusion between dw(€) and the Lebesgue mea-
sure on R" is possible, we will write dw({) as d€ simply. With this
inner product L?(9,) is a Hilbert space. And every H} is its closed
subspace. Now we are facing to prove the following

Lemma 1.1.4 If k,¢ € Z; and k # ¢ then H}} L H}.

Proof Suppose f = u|q, withu € A} andg = v

q, with v € A7,
By Green’s formula

ov du
0= ulAv — vAu d:c:/ <u—— —vf) dwny,
‘/|\$|S1( ) Q. (97‘ C)T

for a monomial z* = z{* --- 23, we have

ox® " or®
5 =Za:k——:<a>xa.
7

Sv(z Ou(z
——g(r)iz:f@(s), a—g)u:g:kf(@: $ €.

Substituting these into the above equation we get

/ (€= R)F(E)g(E)duon(€) = 0.

n

Since £ # k we get < f,g >= 0. Noticing that H} (and A} also) is
unchanged under scalar conjugating operation we get < f,g >= 0.
Hence the proof is complete. O

Lemma 1.1.5 Span(|J;—,H}) is dense in L*(Q2,).

Proof According to Weierstrass theorem the set of the restric-
tions on 2, of polynomials is dense in C(£,). But by Corollary
1.1.3 the restriction of any polynomial on Q, is just a function in
span({UJy—, ) . Hence we complete the proof. o

Now we obtain the following

Theorem 1.1.6 Let n > 2. L*(Q,) = & 33%  H} where “g %"
denotes orthogonal direct sum. a
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By Theorem 1.1.6, for every f € L?((2,) there holds the following
expansion in L? metric:

F= _Ylf),

k=0

where Yi(f) denotes the projection of f onto HZ.

1.1.3 The case n = 2
By (1.1.6) we know
ai=1 and a2 =2 for keN.

Assume k > 1. Let f*(ry,z9) = (x1 + ix2)*, (r1,79) € R2. Tt is
obvious that f* e A? and also R f*, Im f* are all in AZ. We denote
their restrictions on €, by yf and y% respectively. Then yh, yh € ’H%
and by usual polar coordinate we have for (£).&) = (cos 6, sin ) €
Q2

Y (€1, &) = cos k., yh(£1.&) = sin ko

And we have

ko k
<YLY > =

2T
cos kfsin k6 dO = 0.

/Q UHE WA (E) dun(€)
/

So \%yf and ﬁyf consist an orthonormal base of H} (k € N).

Therefore the system

cos kO, sin kO : k € N}
{\/ﬂ NG f

is a polar coordinate form of an orthonormal base of L?(y). Of course
we are very familiar with this well-known trigonometric system. So
the investigation of L%(2) coincides just with L?(0,27).
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1.1.4 Zonal harmonics

Let n > 2. We denote H}! by H;, A} by Ai and a} by ag simply. We
know Hy is a subspace of L%(2,). Let H; be the conjugate space of
Hy. Then by Riesz representation theorem, we know, for any L € H;.
there is a unique g € H,, such that

Lif)=<f.g>

holds for all f € H;.
Given € € €, define a functional L on Hy by

L(f) = (&), VYf € Hy. (1.1.8)
Then L € H}. Hence we get the following

Definition 1.1.3 Let £ € ©, and let L be defined by (1.1.8).
The unique z € H;, which satisfies

L(f) =< [f.z>=[(&), VfeH,

is called Zonal harmonic with pole € of n variables of degree k and is
. n.k k i NN
written as z = Zg O zg when it is not necessary to indicate n.

The following characterizations of the zonal harmonics are im-
portant.

Lemma 1.1.7 Let z* be zonal harmonic. Then

(i) for any orthonormal base (y;, - - Ya, ) of Hy
ay
£ =y Oy (n), Ve, (1.1.9)
j=1

(ii) for any € and 7 in Q,

2 (n) = 2§ (n) = 2E(¢); (1.1.10)

(iii) for any rotation p of R™ and for any &,nin Q,,

pelon) = 2E(n). (1.1.11)
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Proof By the definition of zonal harmonic we have

k .
<yjaZ§>:yj<£):<Z§7yj >, 321327"'7ak~

Hence
ay a
=Y <y >y=Y u@y
=1 j=1
That is conclusion (i).

Since the representation (1.1.9) is independent of the choice of
the base {y1,- -, yq, } we get the conclusion (ii) by choosing a special
base consisting of real functions.

Now suppose f € Hy. Define g by g(€) = f(p~1€) for all £ € Q,,.
It is easy to verify that g € H; and we have

/ﬂ )2k () = /Q U el o)
=<y, z[;{ >
= g(p€) = f(&)
- /ﬂ F )2 () o).

So by the arbitrariness of f in H, we get the conclusion (iii). The
proof is complete. m

Since we frequently concern rotation, we make use of the notation
SO(n) , as usual, to denote the group of rotations on R™, ie., the
special orthogonal group. The action of any p € SO(n) on a point
z € R™ is denoted by pz as usual.

We now introduce the concept of parallel of latitude which is
related to zonal harmonics closely.

Definition 1.1.4 Let n >3, e € Q,, £ €Q, and e # +£. The
set

Le(€):={n:n=p& peSO(n), pe=e}
1s called the parallel of latitude with pole e and passing £.

If it is not necessary to point out which point is in the parallel
with pole e, then we write the parallel as £, simply.



