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ABSTRACT

We extend the average derivatives estimator to the case of functionally dependent regressors. We
show that the proposed estimator is consistent and has a limiting normal distribution. A consistent

covariance matrix estimator for the proposed estimator is provided.

1. INTRODUCTION

Brillinger (1983) proposed a least squares estimator for the model E{y[x}=F(x'BO), where F(.)

is an unknown function. He showed that, when the regressors x are normally distributed, a least

squares regression of y on x yields a consistent estimator for some multiple of B, Since then, his

estimator has been extended to the case where the joint distribution of x may be nonnormal. Ruud
(1986) and Li (1991), for example, replaced the normal distribution with the one satisfying some
symmetry condition, while Powell et al. (1989) and Hirdle and Stoker (1989) only required
continuous and functionally independent regressors.' A common attraction of all those studies is
that their estimators are computationally simple, requiring no numerical search. However, the
condition that the regressors are functionally independent is too restrictive. In practice, higher
order terms such as squared and interaction terms are commonly used to model nonlinearity. The
regressors often are functionally dependent. Also, the single index specification of the conditional

mean of y is restrictive. In some applications, the conditional mean of y may have a semilinear
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form (see examples below). The main objective of this paper is to present a computationally
simple estimator for the case where the regressors may be functionally dependent and the
conditional mean of y has a semilinear form:

E{yi X,z} = z'atg + F(x'By) for some oy €4 and o £, (1.1)
where x'Bg and z'a are known parametric parts but F(\) is an unknown function.

The extension to the semilinear form is important since many econometric models are
included as special cases of (1.1). For example, the bivariate censored regression model: y =
1{x'By - u}(z'ap + €), with (g, u) independent of x and z, satisfies (1.1) with F(x'B,) = E{e Ju<
x'Bo}. The binary choice model: y = I {x'By — € > 0}, with € independent of x, satisfies (1.1) with
og = 0 and F(.) as the cumulative distribution function of . The disequilibrium model with
unknown regime: y = Min{z'ay + €,V'y, + u), with (u, €) independent of (z,v), also satisfies (1.1)
with some function F(.) and x'By = Z'ay - V'yo. Other models satisfying (1.1) include selection
models, ordered choice models, duration models, and disequilibrium models with observed regime
[see Maddala (1983) for definitions of those models].

Our proposal of estimating o, and P, is analogous to the average derivatives estimator
(hereafter ADE) proposed by Powell et al. (1989). The ADE is based on the derivatives:
om(x,2)/0z = o, and Bm(x,z)/ox = F'(x'Bo)Bs, where m(x,z) = E{y|x,z}. Let m(x,z) denote a
nonparametric estimator of m(x, z) and {(x;,z,yi), i = 1, 2, ..., N} denote a sample of observations.
Then, the ADE for some scale multiple of B, is the sample average of the derivative

om(x;,z; )0, and the ADE of o is the sample average of the derivative dm(x;, z; /dx. Under
the condition that the regressors are functionally independent and some additional conditions,

Powell et al. showed that the ADE is ~/—N— consistent.

The ADE may not be YN consistent, however, when the regressors are functionally
dependent. To see this, suppose that z and v are functionally independent scalars. Let x = (z,v)".
Then x and z are functionally dependent because E{z|x} = z. The joint density of x and z, denoted
by f(x,z), is discontinuous and nondifferentiable with respect to x and z. Two methods are
commonly used to estimate m(x,z): kemnel and sieve. The kernel method estimates m(x,z) by
estimating h(x,z) = m(x,z)f(x,z) and f(x,z) respectively. Since neither h(.) nor f() is differentiable,
the kernel estimators do not converge to h(.) and f{.) in probability as rapidly as required by
Powell et al. (1989). Thus, the kernel-based ADE may not be N consistent. The sieve method

approximates m(.) by a sieve such as a second order polynomial.

Ao +RZHA,ZE +h3X) + A XT +heXy +AgX S A X X, +AgZX| +Ag2X,,




1. A Modified Average Derivatives Estimator

where x, and x, denote the first and the second element of x and {A;, j = 1,2, ...,9} are coefficients
to be estimated by regressing y on those polynomial terms. The derivative dm(x,z)/0x; is then
approximated by A; + 2h4X; + AsX; + AgZ. To estimate the derivative ém(x,z)/0x;, we need

estimates of A3, A4, Ay, and As. Unfortunately, since the regressor x, is the same as z, only the

coefficients: Ao, As, A, (A + A3), (A7 + Ag), and (A, + A4 + Ag) can be estimated. Thus, the sieve

method can not even estimate om(x,z)/0x,.

2. ESTIMATOR
Clearly, the ADE needs to be modified so that it accounts for the functional dependency
explicitly. To do so we express the regressors as some measurable and known transformations of
deep regressors w: x = x(w) and z = z(w). Equation (1.1) now writes
E{yjw} = z(w)'0to + F(x(W)'Bo). (L1y
Suppose that the regressors w are continuous and functionally independent, and that F(.), x(.), and
2(.) are differentiable with respect to their own argumems; With m(w) = E{ylw} and
differentiating both sides of equation (1.1)' with respect to the j-th component of w, we obtain:
my(w) = Z(W)'olo + F'(x(W)'Bo)*x;(W) Bo (1.2)
where the subscript j denotes the first derivative with respect to the j-th component of w and F'(.}
denotes the first derivative of F(.) with respect to its argument.
Ichimura and Lee (1991, Lemma 2) showed that a necessary condition for identifying o, and
Bo is the exclusion restriction that one element of x whose coefficient is nonzero (and thus can be
normalized to one) is excluded from z. Without loss of generality, suppose that the first element of
x satisfies such exclusion restriction. Furthermore, suppose that the first element of x is identical

to the first element of w.

ASSUMPTION 0: (i) F(-), x(-), and z(;) are differentiable with respect to their own arguments; (ii)
all elements of w are functionally independent and continuous; and (iii) the first element of w is
identical to the first element of x, which has a nonzero coefficient and is functionally independent

of z and other elements of x.

Under these conditions, we have: x;;(w) = 1, x;(w) = 0 forj =2, ..., k, zi(w) = 0, and x;,;(w) =0,
where x,{(w) and x5;(w) denote the derivative of the first and all other elements of x with respect to
the j-th element of w respectively. Normalizing the coefficient on the first element of x to one:
Bo = (1,B%)’, equation (1.2) gives my(w) = F'(x(w)'By). Substituting this expression into (1.2) for
j> 2, we obtain:

my(w) = z{(w) g + my(W)*x2{(W)' Bao, ] = 2, ..., K. (1.3)

WD EH

.
.

KURLDGEBHRES



EFHSEMBERARAB

HREFE: LEUEEFFLE

Equation (1.3) can be estimated by applying a pooled least squares regression.

To apply the pooled least squares regression, we need to estimate m(w). We estimate m(w) by
the kernel method. Let {(w,y;), i = 1, .., N} denote a sample of independent and identically
distributed observations. Let K(.) denote a kernel function and let hN denote a bandwidth

satisfying hy— 0 as N — + oo. Let f(w) denote the density function of w and define g(w) =
m(w)f(w). Then, m(w) = g(w)/f(w). We estimate m(w,) by estimating g(wi) and f(wi) respectively;

and we estimate g(wi) and f(w, ) by the Rosenblatt-Parzen kernel density estimators:

N 1 N ~ N
()= —— K((w,; - Iy f(w,) = ———TK({w, -w,)/hy).
g(w;) (N_DhE sZﬂy; (w; —w )/ hy); f(w;) (N—'l)hl&szﬁi ((w;-w )/ hy)

The estimator of m(w)) is m(w; )=é(wl)/f(wl-) and the estimator of mj(wi) is rh,v(wi ), the first
derivative of m(w) with respect to the j-th element of w. Let 90 denote the union of a, and Bm
and define Xj(w) = (zj(w)’, ml(w)*xzj(w)’)’. Define Y(w) = (mz(w), vy mk(w))’ and X(w) = (Xz(w),
vy Xk(w)). Equation (1.3) writes Y(w) = X(w)'8 . Let ?(wi) and X(wi) denote the estimators
of Y(w) and X(w) respectively, obtained by substituting m ;(w,) for mj(wl,), The proposed

estimator of 6 5 is:

~ N - ~ N ~ ~
6= {Z10w; & Wi X(w X, " (ZHw; € WXw)Y(w))l,

where W _is a strict subset lying in the interior of W (the support of w). The indicator function

1 {w‘ € Wl} is used for trimming purpose.
3. ASYMPTOTIC RESULTS
We now derive the asymptotic results of the proposed estimator. Write:
A -1 N v < -1 —1/2 N v
IN(B-8) = (N Z1fw; e WIX(w)X(w)' Y N2 2w, € Wi I K(w) e,
i=1 i=1

where g; = ?(wi)— Y(wi)—[)"((wi)—X(wi)]’G0 denotes the nonparametric estimation error of
Y(wi) and X(wl). Substituting the expression for &, we obtain:

QN - _ an X . . _
N3 {w, e WIX(w;)e; = N7 22w € WiX(w)[Y(w;) - Y(w;)]
i=1 i=1

—-N_l{z‘E‘]{wi c Wl))’\((wi)[)ﬂ((wi)_ X(Wi)]'eo,

Under some sufficient conditions, we show that:
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N7 El{wi € W HX(W,)X(W,)' —X(w )X(w;)]= 0, (1), 3.1

i=l

N3 1w, € WKW, Y (w,) - V0w =5, 0w 1= 0, (),
i=1
N2 3 1w, € Wy bR (w IR (W, )~ X(w, T8 =55 (W, Ju; 1 = 0, (D),
i=1
where u=y.- m(wi), sl(wi) = i{a[Xj(wi M(w )]/ 8w}/ f(w;), w; denotes the j-th element of
=

k
w83 (w;) = Z{O[X (W )Xo (w; YBag *f(w;)]/ 0w}/ f(w;). Combining the above results, we
i j=2

obtain
-2 N : RIPRL
N T l{w,; e W 3X(w;)e; =—N 2w e W js(wiu; +o,(D), 3.2)
i=1 i=l
where s(w) =s (w) + s,(w)). We then invoke the Weak Law of Large Numbers to obtain

N gjl{wi € W)X(w )X(w;)' =E{]{w e W, }X(W)X(w)'}+op )} 3.3)

i=l

and the Lyapunov central limit theorem to obtain:

N"”El{w. e W;ls(w,)u f> N(0, V) (3.4)
b i 1 1 i 3 ’ ‘

where —d> denotes convergence in distribution, V = E{l{wer}s(w)s(w)’O'Z(w)} and oi(w) =
E{u’w}. Hence JT:J- (6—90) is asymptotically normally distributed with mean zero and
covariance matrix Q =[E{l{w € W, }X(w)X(w)'}]™ * V*[E{l{w € W, }X(W)X(w)'}]"".

To estimate the asymptotic covariance matrix Q. Let §(w,) denote the estimator of s(w)),

obtained by substituting f (w;) for f(wi) respectively. We estimate V and 2 by:
. N . . , .
V=N~ _Z]l{wl € Wils(w;)s(w,)'(y; ‘m(W.‘))Z,
i=

Q=[N El{wi e W IK(w)X(w,)T'V [N“‘§1{wi e W IX(w )X(w; )17
i=l

i=1

To ensure the validity of (3.4), we need the following conditions:
ASSUMPTION 1. E{1{weW,}X(w)X{w)} is nonsingular.

ASSUMPTION 2. (i) {w,y)fori=1 2 ., N} areiid, and (ii) E{I{weW }s(w)s(w) ‘c° w)}

exists and is finite.
ASSUMPTION 3. W is compact.

FURUGEHREGH KU EH
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ASSUMPTION 4. &(w) is continuous inw.
ASSUMPTION 5. x(w), z(w), and m(w) are continuous in w, and have up to order of p + |
derivatives with respect to w, wherep > k + 2.

ASSUMPTION 6. Aw) is bounded away from zero on WI and has up to order of p + | derivatives

with respect tow, wherep > k + 2.
ASSUMPTION 7. The kernel function K(u) is symmetric with compact support and for some p > k

+ 2 satisfies:
0 JK(u)du=1,
(i) ju,”uf...u,ﬁ*K(u)du =0 forallly+ L+ .. L<p

(ifi) u;’u;’ ...u,ﬁ‘ K@)du # 0 forsomel) + I+ ..+ Ig=p

ASSUMPTION 8. The bandwidth hN satisfies: (i) h, = 0 as N - +ag (ii) for some small

>0, N"*h¥**?  y0; and (iij) NhZP — 0.

Under Assumptions 0 - 8, we show that equations (3.1) - (3.4) hold.

Theorem 1. Under Assumptions 0 - §, we show: N2 (é - 90)—‘3 N(0, Q) and Q=Q+ 0,.

The proposed estimator can be easily extended to multiple equations and multiple indexes models.
The multiple equations and/or multiple indexes models can be derived from a multinomial discrete
choice model, or from a selection model in which the dependent variables are limited in ranges
according to a multinomial discrete choice model [see Maddala (1983) for definitions of those

models]. To illustrate the extension, consider a two equations system:

m (w,v)) = E{y W} =z, Y, + F(vi +X,(W))B ),

m,(W,,) = E{y, 1w} = 2,(W,Y o, + G(v, + X,(w,Y B,
where w is the union of (wl, W, vV, V 2). Suppose that v . is functionally independent of w . and that
v, is functionally independent of w,. Furthermore, suppose that the regressors w are functionally
independent and the regressors w, are functionally independent. We then have

om (w v )/ov =F'(v +x (W )B ), om(w,v)ov,=GC'(v,+ X,(w,)'B,)-
Eliminating F and G, we obtain:
om(wy,vy)/ 0w, =[0z,(w )/ dwi]'a g +8m (W, v, )/ vy *[Ox (W) Ow (] By,




