


R F B 7

FEBEERRBEERNEZRYR. ANREER BRI 2
MR BRIEH T EROEM, ARSHFEREER, XAERX=+UE, Hha
ERPREERNRERNT =R, AXEMRET BB, E& LRk
THEAN T R EERA TR LA,

WENREDEERBFRSFELYEE WM ELES,

FrHRXE
AEARFFERIEORBENSE R
H# & 4 82K
ALRRBFAIPIAHE 137 5
¥ @45 ) EIRY
TEBRAL S AT AT BHMFEBELE
*

198147 9 AW — IR & : 787 %1092 1/16
1981 fF 9 AMS—XERY mek 14 172
B 11,850 R M4 F2
A 45 1—2,450 Z 8 : 333,000
%—4% 13031 - 1687
A 2310 - 13—

3.20 5%
E ﬁ“ﬁ 235 %



ToE K

(1910—1970)



il El

FEBREZBERBELRER., AEXE—LHE. hENIRERER, YEEN
BEEEBER. MEERLHRN, —L—OF LA —BETIR, E L E R Y
TR CUAB RAERSNRREEEE. T-AtOE+= A\ BEILERERE,
HAERE. SERFLERECHESE, BIREHRKTGF Z LRI XEY, BRI

FhRERY RIS (1928—1930, MAKZFZMAER). —NMEZOFEABERENR
FRBEERE, UETHEERER P20, THERVE, FILRKRERERBETH
FEB . —NEARFELBRAARB RS, HRBREF L. AR BESIS KRS
RENE=SFHERBREFRTYM. —NAZ/N\EFEREGTHELEA. —AHOEX
PRFEE LN, AERE.ZEARRAELRE . ERAREFRRESR. —AEAEM)
MEEREXZEMMN (WER) K% FHEE W AR £ 5 R GRS, R 5.
—NB-EE+ A, thEIZHUR, BRI, WELUS, ti— BT AR E .

WhEER—NEENYER. AZHELEE,AEESE IR, RIRUET, fhsk
MENB T IEEREM. - LN EEEERSM TH TEAER R EGEE”, K5t
BENANREGE, RERUG, B EER 2R OEE, 2R 60 F 465 a0k -+
SEX. FN LU ERNEE RAFHE SR 23 B T —AAEOE, AR
BLETT R THR TR A, RS, Bt 4h, BRIAVLNESHEE12RB .
—MAE—FMFRIREERE, AR LY S RENM N BT 36, AR BES AT, ko
BEEN,TREFLE. X—NA, MR T LB I MENERIREEH. —ALENE
UG, isevfTshBERASE, (H2, HB“EEM"LIAT, avss., NS —Xaik
HEL AR ENNA, R T R BRI E S AEEL 2. FIREREE
FRBHR. FNLIERK LRERERR. ERE. ‘“TOAS KT ENBEE T8, 7
S EARBEE: MESBERYEZNENRAIRENES T, IARRF I, YL
HA— N E A MRRT A TEREHRMAD NS ANIPER X, fiEHE,
AMEMNKIERT —2B0HE, ATERBEENNE, ATEEEB RN
THEE, SRMFD), EEEGNRE—E. XHRSEE RS EE0EW, 2EE
Bk @mEIR.

HFRENREMRIL BEESHFHEHNNEBERTEERR. —LAENEEBEXR
BERMITORES —AREAS, EERET TR EEHNNE AT AT —, X
L, RBEEROGE—THE, — 2 T BB BT 224 2P0+ 2 A BBtk ZE 20k
HENER T AERERE TR SIRPTE. BN, bR AR ThiF e EEENe R
F—MEERGEITEI R, B U, bR MRS T T M S 3 T A B
A £ HHIT T ¥ MCEERNR RTINS AN, HELEBEVRX. —iE]
HREVEM LR HRABARBTRG. FEEASHITRE, RINGILXS

o iii o



BRI L A 5B R R A ST 2 R o B RS MRS R RS . iR
HER A Y B R E R DRI R S0 LR R B S BRI M
BRASHESEEASTH. AT EIFHEEREMRG 2N, Tt wiR g —5R
FER. ME2ENELARZARIEITLRE. —ANSE, XEBEHEH—
BEKITREATIY, HETORGREERSE, MAATURR—BS. HE, BTH
REE, M f0:X 6 M AT T, & AITROR , ZEARIZ. “TO A T8 OB F X2 7
LE?&‘:”;f’EﬁﬁEi“%ﬁﬁiiXﬁ%”E’JHﬂ%ﬁﬂﬂiﬁ:ﬂ XERAISEBEXERE+
ARy,

VPR ER S TABPAE. MAERE, JHiRRE M. ﬁm«msawm»,
CEMERYRCREIE DRI A SIS, NRITEETIEE SN RANE %
B, —ABEAELURE, GHEER I AERRTETNEEREEFE. hEEE
%, AR NAZEDNEA KT LB BRER. ENRE L, — A TEREZE,
B SN A EFE R, B F R SRS TS A0 A, SRR A B S AR
AR, f+AEEEHEEALCHRHE L ABAXECHEL, BHAEBEREEA
AARFLR, SRARRERTHREFR. BE—FLEROA. BEARBTHRE,
BREHAEY. MARANEFEDHER, TLEEST NN EEURBERNEEE
—RBHTRANTE, BERERER, HREERANEE, BN ZRHORE, %

¥ HEINESRESHRENERT, MM REEZRR, REEHFEROBEANS
BB T, BEEE AR IFHER. mmw S Bt B2 1 — B
BT,

 BRAEARERYAR L. ﬁﬁ‘ﬁﬂﬂ@ﬁﬂ)‘c*‘#«ﬁﬁ%% RS B3 B S
EEL RS R AANNER. A TESM, — Lt EEEEES T EEEE

TS g Vekdid ZAR BRI A MU BRGE Y, BETN T AR
BOR e 1B T IR LA ‘

C HRARFEALXEAE, HPRBUBERNEENTES. BT EENR
RN R MRS TR XA THUE, SR XB R HER. RANEN—RAIRK
PR E R AR T, — R R TR B 5 e BUR S A MR T . e b X
AR, R E EAR RS DU IS5, B RO e R T RS TR
G ERET, ARAEA IR, ﬂﬁﬁ%¢$%7ﬁ&ﬁﬂ¥%&:7&$ﬁﬁ%ﬁ§+

TEH BY¥E
HHEARERFER
—hWANOQE=A

W EREEWICAR(E£T)

1. On the Limit of a Sequence of Point Sets. Bull Amer. Math. Soc., 41 (1935),

. 502—504.

‘2. Contribution to the Theory of ‘‘Student’s’’ t-Test as Applied to the Problem of
Two Samples. Stat. Res. Mem., 2 (1938), 1—24. : '

iy e




oo

10.
11.
12
13.
14.
15.
16.
17.
18.
19.
20,
21.

22.

24,

25.
26.

27.

On the Best Unbiassed Quadratic Estimate of the Variance. Stat. Res. Mem., 2
(1938), 91—104. :
Notes on Hotelling’s Generalized T. Anm. Math. Stat., 9 (1938) 231—243.

A New Proof of the Joint Product Moment Distribution. Proc C’a/mbndge Phrilo-
so. Soc., 35 (1939), 336—338.

On the Distribution of Roots of Certain Determinantal Equations. Ann. Eugenics,
9 (1939), 250—258. '
On n-Fold Iterated Limits. Chmese Math. Soc., 2 (1940), 40—53.

An Algebraic Derivation of the Distribution of Rectangular Coordinates. Proc

-Edinburgh Math. Soc., 6 (1940), 185—198.

On Generalized Analysis of Variance, Biometrika, 31 (1940), 221—237. .

On the Limiting Distribution of Roots of a Determinantal Equation. J, London
Math. Soc. 16 (1941), 183—194.

On the Limiting Dlstrlbutlon of the Canonical Correlations. Biomeirika, 32
(1941), 38—45.

Analysis of Variance from the Power Fu_nctlon Standpomt meetmka, 32
(1941), 62—69.

Canonical Reduction of the General Regression Problem. Ann Eugemcs,
11 (1941),- 42—46.

On the Problem of Rank and the L]mltlng Distribution of Flsher s 'I‘est Functlon.
Ann. Eugenies, Vol, 11 (1941), 39—41. ‘ Yo

The Limiting Distribution of a General Class of Statisties. Acad. Stmca Scwnco
Record, 1 (1942), 37—41,

Some Simple Facts about the Separation of Degrees of Freedom in Factorml
Experiments. Sankhya, 6 (1943), 253—254. Ny

The Approximate Distributions of the Mean and Variance of e ‘Bample of In-
dependent Variables. Ann. Math. Stat., 16 (1945), 1—29.

On the Approximate Distribution of Ratios. Ann. Math. Stat., 16 (1945), 204—
210.

On the Power Functions of the E*Test and the T*-Test. Ann. Math. Stat.,
16 (1945), 278—286.

On a Factorization of Pseudo-Orthogonal Matrices. Quart, J. Math. Ozford Ser.,
17 (1946), 162—165.

Sur un Théoréme de Probabilités Dénombrables. (with K. L. Chung). . B.
Acad. Sci. Paris, 223 (1946 ), 467—469,

On the Asymptotic Distributions of Certain Statistics Used in Testing the In-
dependence between Successive QObservations from a Normal Population. Anns.
Math. Stat., 17 (1946), 350—354.

Complete Convergence and the Law of Large Numbers. (with H. Robbins), Proe.
Nat. Acad. Sci. (U.S.A.), 33 (1947), 25—31.

The Limiting Distribution of Functions of Sample Means and Application to
Testing Hypotheses. Proc. Berkeley Symp. Math. Stat. Prob. (1949), 359—402.
B ThE SRR, B, E—%,. $=1 (1951), 257—230,
HMYMBEMALERE B¥OR,EMmE, B2 (1952), 197—200,

On Symmetrie, Orthgonal and Skem-Symmetric Matrices. Proc. Edinburgh Math.
Soc. Ser. 2, 10, Part 1 (1953), 37—44.




28,
29.
30.
31.
32.
33.

34.

35.

36.
37.
38.

39.

ETANSX ARSI ERE. BEHm, FUE, £—IH(1954), 21—32,
WA —M RN, R, B HE, 8= (1955), 333—346,
WEMERKN—FELR SERRXFEFR(EARE),F—%, £ (1955), 1—16,
—ANEBEHER— A RRMRTEENERE A #. LERZFR(BRFE), £=
%, B (1957), 167—209,

LR NS Fo R B 4E 3 62 L db R RZ 2 (B RE ), 55045, 58— #7(1958),
145— 150,

RREC 1A L AEET N F AT AT BN R EBREKOTHRE. A ERE
BB, EM%, F=1 (1958), 257—270,

_'4*% L, ﬁ%ﬁg M; %’%f%:ﬁ s =6, &i%ﬁ,%'}"m%, %—E (1964)3
177—178.

A General Weak Limit Theorem for Independent Distributions. Appendix III in
Limit Distributions of Sums of Independent Random Variables, revised edition,

(Eds. B. V. Gnedenko and A. N. Kolmogorov), (Translated by K. L. Chung),
(1968).

TROTRIRBR A GFRERmEHTHLINKRE, DBER S EE). By
R,58-HH%. BSHEH (1964), 694—714,

B VHAELR AR GFREREHTTRERRE, D FR S X ER). &%
R H L B (1964), 240—281,

BEBLERE AR (B1FE: BREEBEE). LRAERR (BANS), 85—
HH (1979), 21—47,

BIB JERESRAMEIERHBCGER). #EEkibCE(1981),211—225,

évie’




B S5 ceesenvenses 40606 000000000808 000 uREssssericraabestottinrettaoteerossiasasoasacatietittatoincantietaes iif
Contribution to the Theory of ‘‘Student’s’’ t-Test as Applied to the Problem

OF TWO SamPles «eeereressrsetsseteteiniittioiiiiiiiestesttneremanimietteereicun 1
On the Best Unbiassed Quadratic Estimate of the Varlanee ---:eevvevoriirieecaeiaenns 24
A New Proof of the Joint Product Moment Distribution eec-cceeeeescviieriiniaiaiaa... 38
On the Distribution of Roots of Certain Determinantal Equations cececeeeeseeceeeaenne 40
On the Limiting Distribution of Roots of a Determinantal Equation «.ecereeeeeeee: 50
Analysis of Variance from the Power Function Standpoint esssseeeseiriinieiacaiia.. 59
Canonical Reduction of the General Regression Problem ceeesoceecrcercieiiicieecaces... 67
On the Problem of Rank and the Limiting Distribution of Fisher’s Test

Funetion ecceveesccrsesceness Ceerensasncsnsscses RITTTIE L SYTIIIIII seerssssssatisscnsennsassnns 73
The Limiting Distribution of a General Class of Statistics srerereerercrrcccccinnene. 76
The Approximate Distributions of the Mean and Variance of a Sample of In-

dependent Variables «-ccoterecrerererecromemiaiiiiiiiiiiiiiii e 79
Sur un Théoréme de Probabilités Dénombrables «ceseseesrorerrrorecaeniiaciii.. 104
Complete Convergenee and the Law of Large Numbers «cccecerecencericniia, 106
A QGeneral Weak Limit Theorem for Independent Distributions eereeeveseveeienee. 112
— A BB PR — A HRE AR R T B HUBE A TS HR +ooevvererrr i 132
L B PR BI A T TR R O SETTHELTME +vevvvenoreennenerunnessnnenneneanessiuetennnrenite e e 170
BCER 251D L ST A 5 T AT R AR BB R FT B oo 175
""/I\K% L, 2.7%59 Ma%é’jﬁ;,ﬁs N ST TTT T YT TP Nasasessteriatittanentaion ictiiiirnns 188
Qﬁm]ﬁmmpaﬁﬁ ................................................................................. 190
BIB 4EpE SHAIRL R IEATEY -+---- Y N e 211




CONTRIBUTION TO THE THEORY OF “STUDENT’S"
t-TEST AS APPLIED TO THE PROBLEM
OF TWO SAMPLESD

I. INTRODUCTION

Consider two unconnected normal populations, IT; and IT,, witn means &, & and
variances o}, o2 respectively, and suppose that a sample is drawn from each of the
populations. The general question whether the populations are alike or not presents
itself in three different phases which we may deseribe as follows in the terminology
commonly employed in testing statistieal hypotheses:

(A) to test the hypothesis H,, that £, = & and ol = o}, against the set of all the
alternative hypotheses which specify nothing except that &, 7 £, or i # o3 or both;

(B) to test the hypothesis H,, that & = £ while the alternatives specify nothing
except that & 2= &;;

(C) in comnexion with IT, and II, it is assumed as given that o? and o3 have the
same (though unknown) value, to test the hypothesis H,, that & = £, against the set of
alternatives that §; 2 &,,

It is to be noticed that if either H, or H, is true, then the populations IT, and I,
will be identical, while if H, is the hypothesis under test, we are only interested in
whether or not the means are the same, neglecting altogether any difference that may
exist between the population variances.*

R. A. Fisher (1925) was the first to prove that whenever the two normal popula-
tions are identical a certain statistic calculated from the two samples will follow exactly
the f-distribution of ‘‘Student”. The square of this ¢ we shall later denote by u, and
consider it in detail. Thus, without discriminating the hypotheses H, and H,, Fisher
introduced the f-test as the criterion for the identity of II, and IT.. As is well known,
the i-test used for this purpose is an exact one in the sense that the distribution of ¢
is entirely known under the assumption that H, is true. Later on R. Sato (1937), using
the method of treating composite hypotheses due to Neyman (1935), obtained some
general results which involve the fact that, if the hypothesis to be tested is H,, then the
i-test is the uniformly most powerful of all the unbiassed exact tests that can possibly
be constructed. It follows that the #-test completely answers the question (C).

Fisher (1934, p. 122) expressed the opinion that for the hypothesis H,; the same
t-test should be used, while Neyman and Pearson (1930) suggested that the A-test
might be used. The properties of A have been studied by P. V. Sukhatme (1935), who
has also prepared a table of 5% significance level of A. These are the attempts to

1) E%: Stet. Res. Mem,, 2(1988), 1—24.

* Buch a question might arise, for example, if we wished to know whether one variety of sugar

beet had on the average a higher sugar content than a second, differences in the variability among
individual plants being immaterial.



answer the question (A).

As to the testing of the hypothesis H;, eriteria have been suggested by Fisher (1936)
and M. S. Bartlett (cf. Welch, 1938), the former based his criterion on fiducial argu-
ments and the latter devised some tests that have the advantage of being exact.

The purpose of this paper is to give a thorough survey of the possibilities that
certain test criteria, namely, u.(=#) and %. (which is closely related to u,), may be
advantageously used for H, ot H.. The whole discussion is, of course, dependent on a
knowledge of the distributions of #, and #., and thence of their power functions.* in
terms of the parameters & and ¢i.. Unfortunately most of the results cobtained beiow
are of a rather negative character. The only positive conclusion arrived at is that, in
the case where the sample sizes are the same, the test u.(= . here) may be safely used
in testing the hypothesis H;. The same problem has been taken up by B. L. Welch
(1938) ; the results obtained by him by an approximate method are in full accordranc‘e
with the general results deseribed below.

II. THE DISTRIBUTION OF A STATISTIC %

(1) We have assumed that two independent normal populations have means £, C»
and variances o, o} respectively. Let samples of m;(j =1, 2) individuals be drawn,
giving rise to Z;, the sample means, and 3; == I(z — Z;)? the total variations about the
means within thé samples, for j =1, 2. Denote by ’

5“’§1"‘§2, 9’='GJ/0'§, (1)
o o &2

=Tl g E , 2
" N, 20 @

‘Thus H 1 is the hypothesis that A =0 and 6 = 1, H, is the hypothesis that A =0, while
the hypothesis Hj states that A = 0 under the a priori assumption that 6 = 1.

Instead of considering # we shall always deal with its square. Accordingly we put,

u = (5 — fz)%/(szl + A,3)), &)
where A, and A, are some known positive constants. Define also B, and B, by
Bjo' = Ao (j=1, 2). @

Later on we shall identify 4 with some particular tests by giving special values to A,
and A..

A method of finding the distribution of the ratic of two independent random
variates is due to H. Cramér (1937, p.46), If z=X,/X, and if X, and X. are

independent, then under certain restrictions the elementary probability law of z is given
by

o) = L aosic—oa, ®)
Tl J e

where ¢;(¢) is the characteristic function of X,(j =1, 2) and ¢.’(— t2) denotes the
function

d
dy ¢z(y)

yr=—fg

* For a definition of the power function of a test and a discussion of some of its properties sce

Neyman and Pearson (1936, 1938).
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We shall use the formula (5) to get the distribution of u, without, however, stopping to
prove the legitimacy of doing so; the reader can easily satisfy himself in this respect.
The numerator and denominator of % have respectively the characteristic functions

Bi(1) = e=PeMO-2"i0(] — 20%it)"1 (6)
$:(£) = (1 — 2034,it)~ 3 B=D(1 — 2034 4it)~ -
= (1 — 2B,o%t) " Fm-0(1 — 2B,0%t)~ om0, &)

Hence
Pi(—tu) = %[ By(y — 11 + 2Bya%itu)~1eet(1 + 2B,o%tu)~1 0
+ By(n; — 1) (1 + 2Bio%itu) =31 4 2Botitu)~i»0], (8)
Substituting (6) and (8) into (5) and making the transformation 2¢*% =7 in the
resulting integral, we get the elementary probability law of »:
p(u) = B,(ny — 1)Jy 4+ By(m, — 1), »

where
-

Jy= i—r eMa=1)(1 = i2)~1(1 4+ Byizu) (1 4 Byiru)~imddy,  (10)
Vil ~—

—4 (e
J; = %—S eM=in (] — i2)~3(1 4+ Byruw) 301 + Byirw)~Hetddy,  (11)
I —00

(2) The expansion of p(u) into an infinile series. If X, and X, are distributed
independently as x*’s with f, and f, degrees of freedom respectively, then it is well
known that their ratio 2= X,/X, will have the elementary probability law

1 231(1 + 2)~ 1% forz > 0, (12)
B(L 213
2 2
while p(2) =0 for 2 < 0. On the other hand, we may apply (5) to find p(2). Thus.
if ¢;(¢) is the characteristic function of X; for j =1, 2, then

p(2) =

(D) = (A = 2iH)~#h, (13)
& (—t2) = f;i(1 + 2itz)"ih, (14)
Substituting (13) and (14) into (5) and putting 2¢ — 7 in the resulting integral, we get
p(2) = i—* r (1 — i)~ (1 4 ir2)-Hide, (15)
T J -0
The right-hand sides of (12) and (15) must be identical; we have therefore
er A=)~ Q4-drz)-tdr— 1 — 2 114 2) 10D for 2 >0
il B(Ln, Ly
2 1y 9 3
= (0 forz <0, (18)

identically in 2, f; and f,, at least when f, rnd fi are positive integers.
With the help of (16) we can evaluate the integral, say,

w(z, f;) =12

o
4

S‘” eMu=i(] — ip)~3(1 + irz)'%’:“dr, an

where f, is some positive integer. In fact, the integrand of (17) is Z &x(7), where
k=0

R



() = g (1 = ir)~*2(1 + irz)~ih=, (18)

We have

< o] = 35 2 1+ it 4+ st
= k=0 k=0 R!

- VO] 4 22711 + 2T < o+ )THA + D~ (19)

The last written function being summable over (— oo, c©) whenever z =0, the series

z &i(7) may be integrated term-by-term ;* thus we have

k=0
k (o
Tz, f;) = fie7? Z L S A — )~ F (1 + irz)~Hiide, (20)
47’: =0 k' —®
Applying (16) to (20) with fi =2k + 1, we get
U(z, fr) = et > 2 L (1 + 2)~ 1% for 2 >0
=kl p (k + 11 f)
2’2"
=0 forz <0, en

, identically in z and f,, at least when f. is a positive integer.
We are now in the position to evaluate J; and J,, Suppose 0 < B, < B,, then from
the identity

. B . 1 — BB
1+ Byivu =22 (1+ B u,(l———‘———’) 22
wew = g ( 17w 1+ Byiru 22

we have

1 %(nz—!.) .
(1 4+ Byizu)~ 7% D = (g_‘) a+ Blwu)—étn,-x)
2

1
i T(—g(’ﬂ;*l)‘i‘h) B, \* .
—-l) (1 + Byiru)—, 23

2 T(%(n,—l))h[ (1-32'

Substituting (23) into (10) we get

X

B, \z(m—1)

n= (B;) - Z 32, (24)
where
( m—n+@
‘ B \* : . 1 , _4
6 (z) = \1 -— —1-) e¥4=(1 — ¢2)~ (1 + Byiru)~#¥-5 (25)
( (ny — 1))zu B,

N =m -+ n. (26)

In order to show that we can reverse the order of integration and summation in (24), we
have

* By the Lebesgue theorem of term-by-term integration; cf. e.g. Kestelman (1937, p. 137,
Theorem 214).
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< D 1a(r)] = oMU+ (T 4 12)=1(1 + Birnd)~4N
h=0

- T<—1‘<"z—1)+h)
0 I‘(zi (ny — 1))11,! (\1 Bz> (1 + Bizad)- 44

A=

__1—B/B, ]-%%—"

e*(1 + )~1(1 + Bhw?)~4v [1
¢ = 1) 1 + Birhd

i )
< By 4 ot 4 mea
2

Provided u 5= 0, the last written function is summable over (— co, %) ; therefore*

Jy =m(§i)1("’ I)ZL $a(r)dr

45 A=0
1 .
- T(—(.nz-—l)"i"h)
- e—z(&\ $(n,-1) 2 (1 _ &)h
) 4=0 1"(i (ng — 1)>h' B,
9 !

4” Bz
x r eM1min(1 — ir)=(1 + Byizu)~4¥-tdr. (21)
Comparing (20) with (27) we get immediately

(l —1)+h)

- ( ) Ly~ 1) 2 (1 Bl)" 1 ¥ (B, N+2r—2). (28)
-1 B NLon o u, - ’
1 B, ‘=° (% (n,-D)h' B,/ N+2h—2 1

Similarly we have

L+
J,_(_B_l)}('rh) > T<2 m +h) 1 ¥ (B, N+2h—2). (29)

- &)
2 »=0 T(—;« (n,+1))h1 ( B,/ N+2rh—2
From (9), (28) and (29) it follows after some reduction that

il A
p(u) -— B'f;'(ﬂrl-l)B;*(lz_l)Z C‘ (1 — %) W(Blu, N + 2h -_— 2), (30)
A=0 2
wherein we have put

( (ny— 1) + h)
( (n, —D)h! '

Formula (30) is true only when B, < B:. In the case B, << B, we have only (to inter-
change the indices 1 and 2. Thus

(31)

1 ad ’ I
p(u) = Bre-upinn 3 ¢ (1 - %) W (B, N + 20 — 2) (32)
A=0 1

*  Bee footnote on p. 4

o 5 o
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for B, < B;, where

(% (m—1) + h)

¢, = (33)

(-;— (ny — 1))hu

With the functions ¥ given by (21) the right-hand side of (30) is & repeated series
of positive terms. It is therefore identical with the double series

/Bl HORS 1) -
p() = \E) ff:“ c, (1 — ,) Epu@) tor Bi< B, (34)
where
1 k— .
psr(u) = Bthut (1+Byu)~sN-D=4=k, (35)

B(k+—-2~,E-(N-—2) +h)

Similarly we have

* %(n
p(u) = (B;‘-) Z C,, (1 —_ —-) — phk(u) for B; < B, (36)
"By bk=0 k1
where
L 1,_.!.
Prau) = B (1 + Bay-iw-n-sr 37
B(k+~ 1w - 2)+h)

If, as is permissible, we sum the double series (34) first with respeet to 2 and then
with respeet to k, we shall also obtain
g~ ) : 1
(u) - (BI) Vo Z 1 Bk+— k—,(l + Blu)‘"*(”“"‘"
o Kl B(k + 2 W 2))

1 1 1 1— B/B
XF(— —D, =N =D+ k= N——2,—‘—i>, 38
2(nz h) 2( ) 2( ) 1+ B (38)

and a similar formula from {36).
Let us indicate rapidly a few particular cases of p{u).

Case (i) A=0: Denoting the corresponding distribution by p.(%) we have

1(n,—1)
mw) = (B3 01 - %) paCw), €
A=0
where B
u 3
Ph(#) = —— 1 * Q1 + Bu)~iw-o-, (40)
B ( N —2 )
5o ( Y+ h
Case (ii) B, =B.=B: Using the notation p(u]B ) in this connexion we have
p(u|B) = e“ k—— pn(u) (41)
=0
where
o+l k-4
Pa(u) = B u (1 + Buy-du-n-k, (42)

(k+—1- ~1—(N-—2>)
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Case (iii) A=0and B,=B,=B:

-t
po(u|B) = Biu (1 + Bu)-4a-n, (43)
B( LI Sy g g 2)) |
22
Case (iv) B;=0: Putting B; =0 in (9) and (11) and remembering (21) we get
p(u|By = 0) = ¢ Z 1 b4 (1 4+ Bu)mim (44)
k1 P(k + % L — 1))

(44) is also the limiting furm of (38) as B, tends to the limit zero.
Case (v) A=0and B,=0:
1

B(-%—, -;— (ny — 1))

(8) Finite expressions of po(u). If both n, and n. are odd, then the integrands
of (10) and (11) are uniform functions of 7 in the upper half plane having only poles
at the points T =4/Bw and 4/Bu. Accordingly the integrals in (10) and (11) can be
evaluated by the caleulus of residues, resulting in finite analytic formulae for J, and
J:. In the case A =0 we shall show how to get the finite expression for p.(u#) without,
however, resorting to the method of residues. ’

Putting A =0 and #;=2m;+1 (j=1,2) in (10) and (11) we get

po(u[ By = 0) = Biuw (1 + Bu)~im, (45)

h= 17 @ — i+ Birwy (1 + By, (46
T 4 T '
Jy= Zl' r 1 — i) + Burw) ™ (1 + Byiru)~m™+dr. 47
T J T . '
If we denote by
I, = 11““ S“ (1 = 4r)~1(1 4 Byiru)=i(1 + Byru)~"dr, (48)
yi4 -—00 -
then from (9), (46) and (47) we have
Po(u) hand 2mlBllml+l.h1, -+ 2m2 BZIm‘-m,:l-lv (49)
From the identity (22) follows easily the recurrence formula '
L= 2 Bl = Bl o1, (50)
where 7
A= DB, — B, &2

provided A 7= 0. On the other hand, from (16) we have, on putting fi=1 and
fo=2(r —1), |

I,o =

(Buw)~+(1 + Ba)i~,
2(r — 1B

L\Dli—‘

,r—1)
( (62)
(Ba)~1(1 + Bu)i-—.

b
2r1 J

In,-c-_-

/—-.,_. e

2(r — 1)B



With the help of (49), (50) and (52) we can compute po(u) by repeated steps.
Below we give, for n« =9 and n, = 5, the scheme of computation for p.(u):

Pn(u) = 831152 + 48,15 (i )
- % (8B, — 8B\B,l, + 4B\B,l,, — 4Bl ) (ii)
- % (8Bl — 4B,B,1; — 4B, (i)

- i—z (8Bilyy — 8BiB,Iy — ABB,I, + 4B\Biy — AB B, + 4By (iv)
= glz (—12BB,Iy + 4BMy) - )
- ,113 (— 12BIB,1,o + 12B'BiIy + 4B,Bil, — 4B:1,) (vi)
= -é (12B!B3Iy — 12BIBiI;; + 4BiBiI, — 4B,Biy; — 4B B, + 4B ) (vii)
- _1% (—8BIBi, — 8B,BI) ' (viii)

- 21—5 (—8B B, + 8BB, — 8BBIy + 8B,BIy). (ix)

Ezplenation. To obtain the lines (ii), (iv), (vi), (vii) and (ix) apply formula (50)
to the lines immediately preceding; the lines (iii), (v) and (viii) are cbtained by
collecting similar terms in the lines immediately preceding. An underlined term can-
not be reduced any further and has therefore not been copied in the subsequent lines,
but is, of course, a term of the final expression of p,(u).

Thus, collecting all the underlined terms, we have, for 7, =9 and 7, =5,

3 ID2
BiB: Lo+ 12 BB 1o—

B} B B3 s
poCa) = 828 7, — 12 s 8% s B s Bg,
(53)
The formula (53) is true only when B, 3 B,, If B, is held fixed and B, allowed to
approach B, as its limit, the rxght-hand side of (53) will, of course, tend to the limit
given in (43), namely

B’iu‘“
—— (1 + Bu)~%
5(3¢)
2 b
but in a rather complicated manner. Even the way in which the integral of (53), taken
between the limits 0 and co, becomes unity is intricate enough. Thus

o _ B _ BB 3R!B} _ 4BB} 4B,B} BY
_L poCyan = 2 — 2B . BB A0 BB B
and
_ 4BB} | 4B:B! _ _ 4BB}
A5 NS At
— 4BB | 3BB _ Bl _ 3BBi _ B
Al At A A At

A s o b <



8BBL _ Bl _ 2B, _ _ 2BB, | B

A M A Al A’
—~2BB;, | B | B _ (Bi—B)
Al Al A A

In the manner described above we have computed p.(u) for several particular
values of %, and m.. The results are given below, the expressions Is and I. being defined
in (52),

=93, n,=15:
B B B 8 B, \*-*
po() = ?;(4130 ~ 14k 120> + 2 Z‘, (9 — 1)(2r — 2) (Tl) Io: (54)

=3 nye=5:

po() = 2 -:l I — 2 (2 B, la + 4103) - (55)
" o=, =3:
() = = (Bilo — Bilu); (56)
o =n=>5: |
2o(w) = & (Bl + Bile) — ~4B;AIBL (Bl — Bilw); (57)
fh =Ny = T:
() = 25 (Billo — Bifo) — 12252 8L+ Bitw) + 22 (Bl — BiTw);
(58)
fy ==y, =9
P = 2 (Bl + Bil) — 243132 (Bilo + Bilo)
+ 428 (Bl — Bilw) — 2B 81y ~ Bi1); (59)

n1‘=n2'='11:

4031

212
po() = iQ (Bilg — Bily) — 29818 (por 4 31,y 4- @’Z’;i (Bilo— Bilo)

i+ Bilg) +

140B:B3
-_— __..__As (B3 - Bilq). (60)

140B!B!
"_—'Z;_l (Bﬂzo

III. THE POWER FUNCTION OF %

(1) From the definitions (1), (2) and (4) of the quantitizs 6, o* and the Bi we
have

B e T p | mimdy

, , 61
1y + 1,0 : n + n,0 (61)

so that
Bi/B; = o6, where p == A;/A,. (62)

T 9 o



