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- FOREWORD

ystem that will help me manage my factory” (or my hospi-
stem, satellite system, etc.)

sRf“Well, let’s see. I can put together components that do sorting,
mmdwm

But how would those fit into my system?”

: ENGINEER: “Actually, at a pretty low level. We'll have to spend soffie time
: need at a higher level, and how it would all fit together.”

dbove illustrate one of the biggest problems in software engi-
mnumedmeaharacﬂonsﬂmmnmctthedwamnm:sof
cteristics of systems that software engineers can build.

can usually be handled in other engineering fields. For exam-
huilt, a civil engineer can ask the user a number of questions
traffic loads, setting, and environmental factors. Based on the
ify the most appropriate architectural style for the bridge:
truss, etc. This intermediate abstraction then enables the engi-
ed principles and experience to specify, analyze, plan, and mon-
tyle of bridge, with high levels of efficiency and confidence.
ediate abstractions scarce in the software field, but also we
ration of architectural claims such as:
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+ “Our system’s balanced architecture ensures fast response time across all client-
server configurations.”

In Chapter 1 of this book, Mary Shaw and David Garlan show that these kinds of
problems generally characterize a field that is trying to progress from a craft to an engi-
neering discipline. In the remaining chapters, they lay the foundations and provide initia)
concepts and techniques for one of the critical needs of an engineering discipline: product
architecting.

In particular, they provide several classes of intermediate abstractions to help bridg>
the gap between software needs and solutions. A key gap-filler is the classification and
analysis of architectural styles for software, analogous to those for bridges. Shaw and Gar-
lan provide definitions and discussions of major current software architectural styles: pipes
and filters; data abstraction and object-orientation; event-based; layered; repository; and
process control. They also apply the styles to some representative software applications, to
show the differences among the resulting design solutions, and their comparative advan-
tages and disadvantages.

Other key architectural gap-fillers provided in the book are domain specific software
architectures (DSSAs), architecture definition languages, and architecture-based tools.
DSSAs provide a set of intermediate abstractions particular to a given product domain,
such as factory, hospital, product distribution, or satellite control domains. These domains
may share some abstractions, such as functions for data acquisition, monitoring, control,
and decision support. But they will have some further domain-specific Hifferences,
depending on characteristics of their typical users, environments, and quality require
ments such as safety and information security.

Architecture definition languages provide more precision in representing the archi
tecture of a system than do the usual software box-and-arrow drawings. Shaw and Garlan’
treatment of architecture definition languages also emphasizes an important insight abou-
software architecting: getting the connectors (interface assumptions, protocols, etc.) righ
is at least as important as getting the components (algorithms, data structures, etc.) right
Architecture definition languages also provide the basis for a stronger next generation o”
tools for defining a software architecture, and for reasoning about the properties of sys-
tems which would be built to that architecture.

Architecture definition languages and tools enable this to be done at the early archi-
tecting stage, rather than finding out about these properties after implementation, wher:
the cost and freedom to change the architecture is often prohibitive.

Thus, software architectures provide the software engineering field with more than 2
set of gap-filling abstractions. They provide the basis for the most important milestone in
the software life cycle process: the milestone that determines whether your proposed or
default architecture has the strength to cope with current and future workloads; the flexi-
bility to adapt to changing technology and requirements; and the affordability and risk-
freedom to be developed within its planned budget and schedule. If you pass this milestone
successfully, you have a confident basis for committing major resources to develop and
sustain the software system. If not, the de facto architecture you marry in haste will be
there for you to repent at leisure.

My favorite chapter in the book is Chapter 5, which begins to provide guidelines on
how to determine an architecture which best fits a set of software system requirements. For
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a class of user interface software, it establishes a “design space” of functional dimensions
{required portability, customizability, external event handling, basic user interface mode,
etc.) and structural dimensions (abstraction level of the application program interface,
control thread mechanism, communication mechanisms, etc.). It then provides guidelines
for matching structural dimension choices to functional dimension characteristics, and ‘or
reconciling structural design choices with each other. This provides the beginning of an
engineering discipline which can be taught to students and applied across increasing
ranges of software projects.

Another good feature of the book is its guidance on organizing and teaching a course
on software architecture, based on several years’ experience in teaching such a course at
Carnegie Mellon University. At USC, we are beginning to offer a course on software archi-
tecture for our MS program in software engineering, and are finding that the book pro-
vides a good set of organizing concepts and material for the course. A final bit of
expectations management: this book is a first cut at codifying a just-emerging field. It has
some rough spots, and it doesn’t provide all the answers. It won't provide you with fully
mature industry-consensus architecting languages and terminology; surefire cookbook
architecting solutions; or tools that automate the analysis of complex tradeoffs among
functionality, performance, cost, and various desired software qualities. On the other
hand, it provides the best general framework and set of techniques for dealing with soft-
ware architectures that is available today. And it conveys the excitement of being able :0
look at the software field in new ways, and of experiencing a new branch of software engi-
neering in the process of being developed and applied.

BARRY BOEHM
TRW Professor of Software Engineering, USC



PREFACE

A.Rm mWMs
“Good Heavmsi Fnr hmdian forty years [ have been speaking prose without knowing it!”
Moligre, Le Bourgeois Gentilhomme, Act 11, sc. iv

So it is with architectures for software systems. Ever since the first program was divided
* mm modules, software systems have had architectures, and programmers have been
: ﬁ:&l& mterm:tmns among the modules and the global properties of the assem-
ctures have been implicit—accidents of implementation, or lega-
d software developers have often adopted one or several
ategies for system organization, but they use these patterns
ns to make them explicit in the resulting system.
architectures for software systems while investigating better
velopment. We were struck by the evidence of patterns for sys-
ftware developers use purposefully but nearly unconsciously.
m descriptions reveal a substantial folklore of system design, used
precision. Here—waiting to be exposed and organized—is a rich
ription. Its vocabulary includes constructs and patterns not sup-
. "notatlons, or tools. The clear utility of the architectural con-
gal use even in the absence of crisp definitions or tools,
pmhlem of closing the gap between the useful abstractions of
pns and tools. This book is one of the results.

gn. Naturally, a short volume such as this can only highlight
rrain; indeed, the terrain is even now in the process of being
hasizes informal descriptions, touching lightly on formal nota-
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tions and specifications, and on tools to support them. We hope, nonetheless, that this will
serve to illuminate the nature and significance of this emerging field.

AUDIENCE

The book serves two groups. First, professional software developers looking for new ideas
about system organization will find discussions of familiar (and perhaps unfamiliar) pat-
terns for system organization. By identifying useful patterns clearly, giving examples, cor-
paring them, and evaluating their utility in various settings, the book will sharpen their
understanding and broaden their options. Second, students with interests in software sys-
tem organization will find fresh ideas here. They will be able to develop a repertoire of usz-
ful techniques that allows them to approach systems from an architectural point of view
and that goes beyond the single-mindedness of current fads.

EDUCATION IN SOFTWARE ARCHITECTURE

Software architectures now receive little or no systematic treatment in most existing sof -
ware engineering curricula, either undergraduate or graduate. At best, students are
exposed to one or two specific application architectures (such as a compiler or parts of an
operating system) and may hear about a few other architectural paradigms. No courses
seriously attempt to develop comprehensive skills for understanding existing architectures,
developing new ones. or selecting one to match a given problem. This results in a serious
gap in current curricula: students are expected to learn how to design complex systems
without the requisite intellectual tools for doing so effectively.

The software component of the typical undergraduate curriculum emphasizes algo-
rithms and data structures. Although courses on compilers, operating systems, or data-
bases are usually offered, there is no systematic treatment of the organization of modules
into systems, or of the concepts and techniques at an architectural level of software design.
Thus, system issues are seriously underrepresented in current undergraduate programs.
Further, students now face a large gap between lower-level courses, in which they learn
programming techniques, and upper-level project courses, in which they are expected to
design more significant systems. Without knowing the alternatives and criteria that distin
guish good architectural choices, the already challenging task of defining an appropriate
architecture becomes formidable.

We have developed a course, Architectures for Software Systems, to bridge this gap
Largely using the materials of this book, the course brings together the emerging models
for software architectures and the best of current practice.

Specifically, the course does the following:

+ Teaches how to understand and evaluate designs of existing software systems from
an architectural perspective

* Provides the intellectual building blocks for designing new systems in principled
ways, using well-understood architectural paradigms
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+ Shows how formal notations and models can be used to characterize and reason
about a system design

-+ Presents concrete examples of actual system architectures that can serve as moclels
for new designs

This book can be used, together with supplemental readings, as a text for a such a
course. (Chapter 9 describes the course in more detail.) Equally well—and perhaps more
practical for many-—the book can be used as a supplemental text for courses in software
engineering or software design.
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