R Y o
Kt HAHE AH (R

SOFTWARE

[ARCHITECTURE

PERSPECTIVES ON AN EMERGING DISCIPLINE
MARY SHAW DAVID GARLAN

LA

g b, oo P, i
F W W o LS4 JIN, i
y g T 1\ - Y \
\ | \
R R, R NN A)
4 N "f. '\"- 1 B R A
i N 44! JHy
- i d -
: i . Fu S A Y
.

i%ﬁ'ék"-—ié H R4t - PRENTICE HALL

4323538

SOFTWARE
ARCHITECTURE

PERSPECTIVES ON AN EMERGING DiscipLiNg
CNEL R S S
— M E #HF a9 & 2

Mary Shaw
Carnegie Mellon Umvers:ty

AEXZFEEHR

Prentice-Hall International,

HUWaRAmA

00432358

() HEF 1585 S
Software architecture: perspectives on an emerging discipline/ Mary Bhaw, David
Garlan V
©1996 by Prentice Hall, Inc.

Original edition published by Prentice Hall, Inc., a Simon & Schuster Compa-
ny.

Prentice Hall 2> #1280 B A B SR E b F N (A (45 b [E F il R w17
BUEK R T R I M O TR R TR B R IA

A AL B4 N B AZS AR & B8] &, A1 AMEA 7 303 5 R e .
A HHEIS Prentice Hall ;‘5&%5}3%%% EHREELFHE

e 5 PR FAE R [B IL T - 01-98-0265

BH#ERS B (CIP) M7

KRR R 55 R, 9 L/ (Shaw, M.), Tl % (Garlan, D.) & . —& IR . —db
s T IR RE M REL 19984

(R ENE T A

ISBN 7-302-02832-X

1.&- 01.QO#H D0, kM4ETE-EX N.TP311.5
Hh [RR A< 8] 13 68 CIP %03 4% 7 (98) 45 01689

HRRE . HHEKFE R OLRUE RN, B4 100084)

http:// www. tup. tsinghua. edu. cn
ENRlsE: HHERFERT
BiTE. FEDELEICRBRETH

FF & 850x11681/32 ENSK: 8 3/8

R & 199845 BE LAR 1998 % 9 A% 2 REIR
8. ISBN 7-302-02832-X/TP - 1489

El #. 5001~10000

T fit: 15.007C

tH RR U

ifllg

FATyAcE b W O, R R — N EBR e 5 L
BEC b DRFRE BRERT & R RSN CHRE 2HEEMILE %
ME PR AR TS 35 S AR INE 2 95 0 REIR Xy iz .
R AR, T AU o g B SME] T 00 S5 A i 2SR 89
BEST, B E BT, 0002 & s i A B AR SO R R BUE B
MIRE S B T EE R HERT AR R EREHF RN F
H— R & R Y LB IR TR R, R PIEH
E X TREH RSB K . AU R 5% iR
ZOh, BRI LR IT SR BOR . HE FRT S TILHE
- EHOERR SE M RSURMEB M E A HE S, MR N |
B, F AP T 7 At BALRLF 7 0 BB O FOM, 3377 3%
EPME AR, EHEREEN R 6 A A5 2 20 R F A A L, F AT
WAZ SR, SRR RS R . AR AR TR
Prentice Hall 2% m] FIlH K% i Rt At ik & 14 [bR 5B 5 7KOF #
M GINKE @ 5, AR T3S, HERMERK
O PR A BRI S

EHRRFE G

Prentice Hall 2> &]

1997.11

- FOREWORD

ystem that will help me manage my factory” (or my hospi-
stem, satellite system, etc.)

sRf“Well, let’s see. I can put together components that do sorting,
mmdwm

But how would those fit into my system?”

: ENGINEER: “Actually, at a pretty low level. We'll have to spend soffie time
: need at a higher level, and how it would all fit together.”

dbove illustrate one of the biggest problems in software engi-
mnumedmeaharacﬂonsﬂmmnmctthedwamnm:sof
cteristics of systems that software engineers can build.

can usually be handled in other engineering fields. For exam-
huilt, a civil engineer can ask the user a number of questions
traffic loads, setting, and environmental factors. Based on the
ify the most appropriate architectural style for the bridge:
truss, etc. This intermediate abstraction then enables the engi-
ed principles and experience to specify, analyze, plan, and mon-
tyle of bridge, with high levels of efficiency and confidence.
ediate abstractions scarce in the software field, but also we
ration of architectural claims such as:

viil

Forewor>

+ “Our system’s balanced architecture ensures fast response time across all client-
server configurations.”

In Chapter 1 of this book, Mary Shaw and David Garlan show that these kinds of
problems generally characterize a field that is trying to progress from a craft to an engi-
neering discipline. In the remaining chapters, they lay the foundations and provide initia)
concepts and techniques for one of the critical needs of an engineering discipline: product
architecting.

In particular, they provide several classes of intermediate abstractions to help bridg>
the gap between software needs and solutions. A key gap-filler is the classification and
analysis of architectural styles for software, analogous to those for bridges. Shaw and Gar-
lan provide definitions and discussions of major current software architectural styles: pipes
and filters; data abstraction and object-orientation; event-based; layered; repository; and
process control. They also apply the styles to some representative software applications, to
show the differences among the resulting design solutions, and their comparative advan-
tages and disadvantages.

Other key architectural gap-fillers provided in the book are domain specific software
architectures (DSSAs), architecture definition languages, and architecture-based tools.
DSSAs provide a set of intermediate abstractions particular to a given product domain,
such as factory, hospital, product distribution, or satellite control domains. These domains
may share some abstractions, such as functions for data acquisition, monitoring, control,
and decision support. But they will have some further domain-specific Hifferences,
depending on characteristics of their typical users, environments, and quality require
ments such as safety and information security.

Architecture definition languages provide more precision in representing the archi
tecture of a system than do the usual software box-and-arrow drawings. Shaw and Garlan’
treatment of architecture definition languages also emphasizes an important insight abou-
software architecting: getting the connectors (interface assumptions, protocols, etc.) righ
is at least as important as getting the components (algorithms, data structures, etc.) right
Architecture definition languages also provide the basis for a stronger next generation o”
tools for defining a software architecture, and for reasoning about the properties of sys-
tems which would be built to that architecture.

Architecture definition languages and tools enable this to be done at the early archi-
tecting stage, rather than finding out about these properties after implementation, wher:
the cost and freedom to change the architecture is often prohibitive.

Thus, software architectures provide the software engineering field with more than 2
set of gap-filling abstractions. They provide the basis for the most important milestone in
the software life cycle process: the milestone that determines whether your proposed or
default architecture has the strength to cope with current and future workloads; the flexi-
bility to adapt to changing technology and requirements; and the affordability and risk-
freedom to be developed within its planned budget and schedule. If you pass this milestone
successfully, you have a confident basis for committing major resources to develop and
sustain the software system. If not, the de facto architecture you marry in haste will be
there for you to repent at leisure.

My favorite chapter in the book is Chapter 5, which begins to provide guidelines on
how to determine an architecture which best fits a set of software system requirements. For

Foreworp iX

a class of user interface software, it establishes a “design space” of functional dimensions
{required portability, customizability, external event handling, basic user interface mode,
etc.) and structural dimensions (abstraction level of the application program interface,
control thread mechanism, communication mechanisms, etc.). It then provides guidelines
for matching structural dimension choices to functional dimension characteristics, and ‘or
reconciling structural design choices with each other. This provides the beginning of an
engineering discipline which can be taught to students and applied across increasing
ranges of software projects.

Another good feature of the book is its guidance on organizing and teaching a course
on software architecture, based on several years’ experience in teaching such a course at
Carnegie Mellon University. At USC, we are beginning to offer a course on software archi-
tecture for our MS program in software engineering, and are finding that the book pro-
vides a good set of organizing concepts and material for the course. A final bit of
expectations management: this book is a first cut at codifying a just-emerging field. It has
some rough spots, and it doesn’t provide all the answers. It won't provide you with fully
mature industry-consensus architecting languages and terminology; surefire cookbook
architecting solutions; or tools that automate the analysis of complex tradeoffs among
functionality, performance, cost, and various desired software qualities. On the other
hand, it provides the best general framework and set of techniques for dealing with soft-
ware architectures that is available today. And it conveys the excitement of being able :0
look at the software field in new ways, and of experiencing a new branch of software engi-
neering in the process of being developed and applied.

BARRY BOEHM
TRW Professor of Software Engineering, USC

PREFACE

A.Rm mWMs
“Good Heavmsi Fnr hmdian forty years [have been speaking prose without knowing it!”
Moligre, Le Bourgeois Gentilhomme, Act 11, sc. iv

So it is with architectures for software systems. Ever since the first program was divided
* mm modules, software systems have had architectures, and programmers have been
: ﬁ:&l& mterm:tmns among the modules and the global properties of the assem-
ctures have been implicit—accidents of implementation, or lega-
d software developers have often adopted one or several
ategies for system organization, but they use these patterns
ns to make them explicit in the resulting system.
architectures for software systems while investigating better
velopment. We were struck by the evidence of patterns for sys-
ftware developers use purposefully but nearly unconsciously.
m descriptions reveal a substantial folklore of system design, used
precision. Here—waiting to be exposed and organized—is a rich
ription. Its vocabulary includes constructs and patterns not sup-
. "notatlons, or tools. The clear utility of the architectural con-
gal use even in the absence of crisp definitions or tools,
pmhlem of closing the gap between the useful abstractions of
pns and tools. This book is one of the results.

gn. Naturally, a short volume such as this can only highlight
rrain; indeed, the terrain is even now in the process of being
hasizes informal descriptions, touching lightly on formal nota-

xi1 PRrEFACE

tions and specifications, and on tools to support them. We hope, nonetheless, that this will
serve to illuminate the nature and significance of this emerging field.

AUDIENCE

The book serves two groups. First, professional software developers looking for new ideas
about system organization will find discussions of familiar (and perhaps unfamiliar) pat-
terns for system organization. By identifying useful patterns clearly, giving examples, cor-
paring them, and evaluating their utility in various settings, the book will sharpen their
understanding and broaden their options. Second, students with interests in software sys-
tem organization will find fresh ideas here. They will be able to develop a repertoire of usz-
ful techniques that allows them to approach systems from an architectural point of view
and that goes beyond the single-mindedness of current fads.

EDUCATION IN SOFTWARE ARCHITECTURE

Software architectures now receive little or no systematic treatment in most existing sof -
ware engineering curricula, either undergraduate or graduate. At best, students are
exposed to one or two specific application architectures (such as a compiler or parts of an
operating system) and may hear about a few other architectural paradigms. No courses
seriously attempt to develop comprehensive skills for understanding existing architectures,
developing new ones. or selecting one to match a given problem. This results in a serious
gap in current curricula: students are expected to learn how to design complex systems
without the requisite intellectual tools for doing so effectively.

The software component of the typical undergraduate curriculum emphasizes algo-
rithms and data structures. Although courses on compilers, operating systems, or data-
bases are usually offered, there is no systematic treatment of the organization of modules
into systems, or of the concepts and techniques at an architectural level of software design.
Thus, system issues are seriously underrepresented in current undergraduate programs.
Further, students now face a large gap between lower-level courses, in which they learn
programming techniques, and upper-level project courses, in which they are expected to
design more significant systems. Without knowing the alternatives and criteria that distin
guish good architectural choices, the already challenging task of defining an appropriate
architecture becomes formidable.

We have developed a course, Architectures for Software Systems, to bridge this gap
Largely using the materials of this book, the course brings together the emerging models
for software architectures and the best of current practice.

Specifically, the course does the following:

+ Teaches how to understand and evaluate designs of existing software systems from
an architectural perspective

* Provides the intellectual building blocks for designing new systems in principled
ways, using well-understood architectural paradigms

PREFACE xiii

+ Shows how formal notations and models can be used to characterize and reason
about a system design

-+ Presents concrete examples of actual system architectures that can serve as moclels
for new designs

This book can be used, together with supplemental readings, as a text for a such a
course. (Chapter 9 describes the course in more detail.) Equally well—and perhaps more
practical for many-—the book can be used as a supplemental text for courses in software
engineering or software design.

ACKNOWLEDGMENTS

This velume integrates the results of several years of research that depended critically on
the covtributions of our collaborators. Most significantly, our collaborators on results
incorporated here are godparents to the current work. We particularly appreciate the will-
ingness of Tom Lane, Toru Asada, Roy F. Swonger, Nadine Bounds, Paul Duerig, and
Marco Schumacher to allow us to include their papers on design guidance {Lan90a.
ASBD92, S+94]. Thanks go to our co-authors on other work: The formalization of instru-
mentation systems represents joint work with Norman Delisle and others from Tektron x.
The formalization of implicit invocation systerns represents collaborative work with David
Notkin and Kevin Sullivan. Our collection of sample architectural problems was develop:d
in collaboration with Rob Allen, Daniel Klein, John Ockerbloom, Curtis Scott, and Mar:o
Schumacher. The formalization of software architecture was joint work with Rob Allen and
Gregory Abowd. The implementation of implicit invocation was done in collaboration
with Curtis Scott. The UniCon language and tool were developed jointly with Rob DeLine,
Daniel Klein, Theodore Ross, David Young, and Gregory Zelesnik. The Aesop System was
developed with the help of Rob Allen, John Ockerbloom, Ralph Melton, and Bob Monroe
as well as numerous undergraduates. The report on initial experience with a course reports
a joint offering with Chris Okaski, Curtis Scott, and Roy Swonger.

These, of course, are not the only ones who helped. Many colleagues have contrib-
uted to the development of the ideas by helping with examples, challenging our ideas,
insisting that we be rigorous, providing constructive comments on drafts, and in untold
other ways. So, thanks again to James Alstad, Pepe Galmes, Lorin Grubb, Chris Okasaki,
Curtis Scott, and Roy Swonger for their help in developing our course on this material;
David Notkin, Kevin Sullivan, and Gail Kaiser for their contributions to understanding
event-based systems; Rob Allen for help in developing a rigorous understanding of the
pipe-and-filter style; the oscilloscope development team at Tektronix for their part in der.-
onstrating the value of domain-specific architectural styles in an industrial context; Eldon
Shaw for fostering Mary’s appreciation for engineering; Roy Weil for providing engineer-
ing sensibilities and tolerating the vagaries of authorhood; Angle Jordan for arranging the
opportunity to study the history of engineering; Bill Wulf and Ralph London for the long-
term collaboration that taught us the need to choose different architectures for different
problems; colleagues at Fisher Controls, for the opportunity to learn about control soft-
ware; Marc Graham, for arranging discussions with most of the DARPA Domain-Specifi:
Software Architecture groups; Will Tracz, for presenting an architecture for avionics whose

Preruce

essential core was essentially a feedback loop, thereby provoking another look at process
control; Allen Newell, for inspiring the analysis of shared information systems; David
Steier for discussions about Soar/IBDE; Daniel Jackson and Jeannette Wing for their help
in clarifying the benefits and limitations of formal approaches to software architecture;
Lynette Garlan for letting David come to Pittsburgh to pursue research in software archi-
tecture; David Notkin, Kevin Sullivan, and Rob Allen for their collaborative efforts in
developing a scientific basis for implicit invocation; Raj Rajkumar, for helping us incorpo-
rate real-time analysis in UniCon; Robert DeLine, Daniel Klein, Fuchun Jiang, and Gre-
gory Zelesnik, for contributions to the UniCon implementation; Michael Baumann,
Chanakya C. Damarla, Steven Fink, Doron Gan, Andrew Kompanek, Curtis Scott, Ralph
Melton, Bob Mosiroe, Brian Solganick, Peter Su, and Steve Zdancewic for contributions to
the Aesop implementation; Gregory Abowd, Rob Allen, Mario Barbacci, Rob DeLine, Stu
Feldman, Marc Graham, Kevin Jeffay, Dan Klein, Eliot Moss, John Ockerbloom, Reid Sim-
nions, Pamela Zave, José Galmes, and Greg Zelesnik for participating as guest lecturers n
our course.

We also thank Barry Boehm, Rob DeLine, Larry Druffel, Frank Friedman, Norm
Gibbs, Bill Griswold, Ralph Johnson, Nancy Mead, Eliot Moss, Allen Newell, David Not-
kin, Gene Rollins, Robert Schwanke, Dilip Soni, Will Tracz, Roy Weil, Jeannette Wing,
members of CMU’s Software Architecture Reading Group, and numerous anonymous ref-
erees for their constructive comments on drafts of various parts of the work.

Research can't be done without support, and we appreciate the interest and support
of numerous government, academic, and industrial sponsors. The work was funded var. -
ously by the Department of Defense Advanced Research Project Agency under grant
MDA972-92-]-1002; the Wright Laboratory, Aeronautical Systems Center, Air Force Mate -
riel Command, USAF, and the Advanced Research Projects Agency (ARPA) under grar.t
F33615-93-1-1330; the U.S. Federal Government under Contract Number F 19628-90-C-
0003 with Carnegie Mellon University for the operation of the Software Engineering Insti-
tute, a Federally Funded Research and Development Center; Mobay Corporation; Nationel
Science Foundation Grants CCR-9109469, CCR-91 12880, and CCR-9357792; Siemens
Corporate Research; Digital Equipment Corporation’s Graduate Engineering Education
Program (for support for collaborators); and the Carnegie Mellon University School of
Computer Science and Software Engineering Institute (which is sponsored by the U.S.
Department of Defense).

The views and conclusions here are our own. They should not be interpreted as rep-
resenting the official policies, either expressed or implied, of the U.S. Government, the U.S.
Department of Defense, the National Science Foundation, Wright Laboratory, Siemens
Corporation, Mobay Corporation, or Carnegie Mellon University.

Much of the material in this book is derived from work we have published in other
forums. We have relied principally on the following.

- Chapter 1: “Prospects for an engineering discipline of software” [Sha90].

» Chapter 2: “An introduction to software architecture” [GS93b], “Beyond Objects: A
software design paradigm based on process control” [Sha95).
Chapter 3: “An introduction to software architecture” [GS93b], “Beyond objects: A
software design paradigm based on process control” [Sha%5], “Candidate model
problems in software architecture” [S+94].

PRrEFACE

Al

Chapter 4: “Software architectures for shared information systerns” [Sha93b].

+ Chapter 5: “Studying <oftware architecture through design spaces and rules”
[Lan%0a], “The quantified design space—A tool for the quantitative analysis of
Designs” | ASBD921.

Chapter 6: “Formal approaches to software architecture” [Gary3].

Chapter 7: “Characteristics of higher-level languages for software architectu-e’
[SG94], “Procedure calls are the assembly language of system interconnection: Con-
nectors deserve first-class status” [Sha93a), “Adding implicit invocation to tradi-
tional programming languages” [GS93a].

Chapter 8: “Abstractions for software architecture and tools to support them”
[SDK+95], “Exploiting style in architectural design environments” [GAO91],
“Beyond definition/use: architectural interconnection” [AGY94a].

Chapter 9: “Experience with a course on architectures for software systemms”
[GSO+921.

We also wish to thank the authors and publishers of several of the figures for grant
ing permission to reprint them here.

Figure 1.1 is reproduced with permission of the McGraw-Hill Companies frcm
Computer Structures by G. Bell and A. Newell, McGraw-Hill 1971.

Figures 3.16, 3.17, 4.8, 4.9, 4.11, 4.18 are reprinted with permission of IEEE from
Grady Booch’s “Object-oriented development” which appeared in IEEE Transactions m
Software Engineering in February 1986, Won Kim and Jungysun Seo’s “Classifying sche-
matic and data heterogeneity in multidatabase systems” which appeared in IEEE Compuier
in December 1991, Rafi Ahmet et al’s “Pegasus heterogeneous multidatabase syster:”
which appeared in IEEE Computer in December 1991, Minder Chen and Ronald Norman's
“Framework for integrated CASE” which appeared in [EEE Software in March 1992, and
Gio Wiederhold’s “Mediators in the architecture of future information svstems” which
appeared in IEEE Computer in March 1992; all © IEEE.

Figures 3.22 and 3.23 are reprinted from PROVOX product literature with permis-
ston from Fisher-Rosemount Systems, Inc.

Figure 3.25 is reprinted with permission of the Association for Computing Machin-
ery from Frederick Hayes-Roth’s “Rule-based systems” which appeared in Cemmunicatio s
of the ACM in September 1985.

Figure 3.27 is reprinted with permission of the American Association for Artificial
Intelligence from H. Penny Nii’s “Blackboard systems” which appeared in Al Magazine vol-
ume 7 numbers 3 and 4, (c) American Association for Artificial Intelligence.

Figures 4.1, 4.2, 4.4, and 4.5 are reprinted by permission of John Wiley and Sons
from Laurence 1. Best's Application Architecture © 1990 John Wiley and Sons.

; 3 ‘ \;.-, . :-._., I" ‘ ! ‘i%; .

i

19

xviii

CONTENTS

CHAPTER 3 Case Studies

3.1

3.2

33

34

35

Key Word in Context 33

3.1.1 Solution 1: Main Program/Subroutine with Shared Data, 34
3.1.2 Solution 2: Abstract Data Types, 35

3.1.3 Solution 3: Implicit Invocation, 36

3.1.4 Solution 4: Pipes and Filters, 37

3.1.5 Comparisons, 38

Instrumentation Software 39

3.2.1 An Object-Oriented Model, 39

3.2.2 A Layered Model, 40

3.2.3 A Pipe-and-Filter Model, 41

3.2.4 A Modified Pipe-and-Filter Model, 41
3.2.5 Further Specialization, 42

3.2.6 Summary, 42

Mobile Robotics 43

By Marco Schumacher

3.3.1 Design Considerations, 43

3.3.2 Solution i: Control Loop, 44

3.3.3 Solution 2: Layered Architecture, 45
3.3.4 Solution 3: Implicit Invocation, 47
3.3.,5 Solution 4: Blackboard Architecture, 49
3.3.6 Comparisons, 51

Cruise Control 51

3.4.1 Object View of Cruise Control, 53

3.4.2 Process-Control View of Cruise Control, 53
3.4.3 Analysis and Discussion, 58

3.4.4 Summary, 60

Three Vignettes in Mixed Style 60

3.5.1 A Layered Design with Different Styles for the Layers, 60

3.5.2 An Interpreter Using Different Idioms for the Components, 63
3.5.3 A Blackboard Globally Recast as an Interpreter, 66

CHAPTER 4 Shared Information Systems

4.1
4.2

Shared Information Systems 69

Database Integration 70

4.2.1 Batch Sequential, 70

4.2.2 Simple Repository, 71

4.2.3 Virtual Repository, 75

4.2.4 Hierarchical Layers, 79

4.2.5 Evolution of Shared Information Systems in Business Data Processing, 80

Integration in Software Development Environments 82
4.3.1 Batch Sequential, 83
4.3.2 Transition from Batch Sequential to Repository, 83

33

69

CONTENTS

4.4

4.5

4.6

4.3.3 Repository, 85

4.3.4 Hierarchical Layers, 86

4.3.5 Evolution of Shared Information Systems in Software Development
Environnients, 88

Integration in the Design of Buildings 88

4.4.1 Repository, 89

4.4.2 Intelligent Control, 90

4.4.3 Evolution of Shared Information Systems in Building Design, 91

Architectural Structures for Shared Information Systems 93
4.5.1 Variants on Dataflow Systems, 93
4.5.2 Variants on Repositories, 94

Some Conclusions 95

CHAPTER 5 Architectural Design Guidance

5.1

5.2

Guidance for User-Interface Architectures 97

by Thomas G. Lane

5.1.1 Design Spaces and Rules, 97

5.1.2 A Design Space for User-Interface Architectures, 100
5.1.3 Design Rules for User-Interface Architecture, 110
5.1.4 Applying the Design Space: An Example, 111

5.1.5 A Validation Experiment, 113

5.1.6 How the Design Space Was Prepared, 114

5.1.7 Summary, 115

The Quantified Design Space 116

by Toru Asada, Roy F. Swonger, Nadine Bounds, and Paul Duerig
5.2,1 Overview, 116

5.2.2 Background, 116

5.2.3 Quantified Design Space, 120

5.2.4 Conclusion, 127

CHAPTER 6 Formal Models and Specifications

6.1
6.2
6.3

6.4
6.5
6.6
6.7

The Value of Architectural Formalism 129
Formalizing the Architecture of a Specific System 130

Formalizing an Architectural Style 133
6.3.1 Filters, 134

6.3.2 Pipes, 135

6.3.3 Pipe-and-Filter System, 136

Formalizing an Architectural Design Space 139
Toward a Theory of Software Architecture 142
What Next? 142

7 Notation Used in This Chapter 143

XIX

97

129

XX CONTENTS

CHAPTER 7 Linguistic Issues 147

7.1 Requirements for Architecture-Description Languages 147
7.1.1 The Linguistic Character of Architectural Description, 148
7.1.2 Desiderata for Architecture-Description Languages, 151
7.1.3 Problems with Existing Languages, 155

7.2 First-Class Connectors 160
7.2.1 Current Practice, 160
7.2.2 Problems with Current Practice, 161
7.2.3 A Fresh View of Software System Composition, 165
7.2.4 An Architectural Language with First-Class Connectors, 166
7.2.5 The Promise of Explicit Architectural Notations, 171

7.3 Adding Implicit Invocation to Traditional Programming Languages 172
7.3.1 Introduction, 172
7.3.2 Adding Implicit Invocation to Ada, 174
7.3.3 Evaluation, 181

CHAPTER 8 Tools for Architectural Design 183

8.1 UniCon: A Universal Connector Language 183
8.1.1 Components and Connectors, 185
8.1.2 Abstraction and Encapsulation, 186
8.1.3 Types and Type Checking, 187
8.1.4 Accommodating Analysis Tools, 188

8.2 Exploiting Style in Architectural Design Environments 190
8.2.1 What Is Architectural Style?, 190
8.2.2 Automated Support for Architectural Design, 192
8.2.3 Observations about Environments for Architectural Design, 202

8.3 Beyond Definition/Use: Architectural Interconnection 204
8.3.1 Implementation versus Interaction, 205
8.3.2 Example, 206
8.3.3 The WriGHT Model of Architectural Description, 208
8.3.4 Reasoning about Architectural Descriptions, 210
8.3.5 A Brief Explanation of Our Use of CSP, 211

CHAPTER9 Education of Software Architects 213

9.1 Philosophy and Course Overview 213
9.1.1 Objectives, 213
9.1.2 Approach, 214

9.2 Course Description 215

9.3 Assignments 218
9.3.1 Purpose, 218
9.3.2 Readings, 219
9.3.3 Architectural Development Tasks, 220
9.3.4 Formal Modeling, 222

CONTENTS Xxi

9.3.5 Analysis and Interpretation of a System, 222
94 Evaluation 223
9.4.1 Lessons from the Initial Offering, 223
9.4.2 Conclusions About Teaching Software Architecture, 225
Bibliography 227

Index 239

