= mf RS M 4k >+

A SrnnE Gow)

Second Edition

INTERNETWORKING WITH

TCP/IP......

CLIENT-SERVER PROGRAMMING
AND APPLICATIONS

R
“

Internetworking With TCP/IP
Vol I .
Client-Server Programming And
Applications BSD Socket Version
Second Edition

TCP/IP MR B ERA

%1
BF/BEBEERHA BSD XTI

P

452 M
DOUGLAS E. COMER
RN
DAVIOYY,. STE¥RNS
Departmint” &f TCE 80 Sclbnces

Purdaal Inivergity &

West Ld?*ay,g_@%i_‘i N7~

—

BEXFHK

Prentice-Hall International, Inc.

—~ e Dy
Y I

= el
(F) FEF 185
Internetworking with TCP/IP Vol [l : Client-Server programming and applica-
tions, BSD Socket Version, 2nd ed./Douglas E.Comer, David L. Stevens

© 1996 by Prentice Hall, Inc.

Original edition published by Prentice Hall, Inc., a Simon & Schuster
Company . :

Prentice Hall 22 Al AU R F U E P EBA(REBEPEFB ST
UK] DA & T X) M R R R AT AR RCEI AR,

FREMSI AR, RZEBEPTERE, FEBEAIRAPDE . HRH
B,

F B EUH Prentice Hall JKBH thinE, TIREEFHHHE,

JE 5T AR F R ALE R 2 S 01-98-0959

BEHEREHE (CIP) ¥4E

TCP/IP MG H&EHAR XHM:BDEEFR.- B2 M. HZX/(E)HR
(Comer, D.E.), ¥ 30 (Stevens, D. L.). — EIH. — b HERFHR
3, 1998.7

(KEHENHEAS)

ISBN 7-302-02948-2

1.7 @I.0O%- @ I.HHENMMEEEHER KX N.TP393

o I R A P 548 CIP B 7 (98) 58 09324 %

WA AR A ERE KR N, R4 100084)
http:// www. tup. tsinghua. edu. cn

BRI EERZEEIRIT

REGE. FeBERE BT

F A, 850X 1168 1/32 EPgK: 17.125

B O 19984E 9 A% 1 AR 1998 4% 12 A% 2 WED R
4 B, ISBN 7-302-02948-2/TP « 1559

Bl #. 3001~8000

E . 32.007C

H AR Al

illlg

BRIt 5 Prentice Hall HIRA R S EH LM “KE
HENBEA S CEZER)” M “ATM 5 B-ISDN H AR NAH (R E
BR)” SR T RKEEHR, BEEZHETHEFR . ETERME
2 AR T BUR EM, 3 T A REHER. P, R
LREFERNEBHIR —BNEHTERERZRKYHE, B
BRI X E MG EERAR R HEA .

KRBT, M EME S BEREEARWXBART S T
A EERER BB RN CGEER, ANBHBEANT H
M2, 22 AP Ll Duglas Comer BN HH I L EFE
TCP/IP MAEER AR RN ETF, FARUREH PHi i IPV6
B IPSEIREEE, ARINFEMEEEEARTRG X
B AR R A EBREIE A RE TS HEAR TR

BEOFEFREREXEN PN EREBNTZE,

EHREE R

Prentice Hall /A 5]

1998.9

Foreword

Foreword

It is indeed a pleasure to introduce the reader to the revised third volume of Dr.
Douglas E. Comer’s remarkable series: Internetworking with TCPAP. This series,
which began so innocently back in 1987, is-now the premiere source for learning about
the suite of protocols that have made vendor-independent computer-communications
possible — the Internet suite of protocols.

To my mind, this seminal work is our best hope against the ‘‘dumbing down of the
Internet.”” Whilst the media and entrepreneurs fill the popular imagination with visions
of “Internet mysticism,”’ it is Dr. Comer who clearly explains the technical reality of
the technology that makes the Internet possibie.

Although I have learned from all three books in the series, I feel that Volume 3,
Client-Server Programming and Applications, which Doug has authored with David L.
Stevens, is particularly relevant to the Internet today. It teaches us how to architect and
build client-server applications, and — more importantly — how to understand what
trade-offs are involved with each design decision.

So, 1 invite you to undertake a memorable journey into *‘how’s and why’s’” of the
theory, design, and realization of internetworking technology.

Marshall T. Rose
Theorist, Implementor, and Agent Provocateur
Del Mar, California

XX

Preface

Preface

We are pleased to introduce a revised version of Volume 3 in the Internetworking
Series. Broadly speaking, Volume / examines the question, ‘‘What is a TCP/IP inter-
net?”’ Volume 2 examines the question, ‘‘How does TCP/AP software work?’ It
presents more details and explores greater depth than the first volume. This volume ex-
amines the question, *‘How does application software use TCP/IP?” It focuses on the
client-server paradigm, and examines algorithms for both the client and server com-
ponents of a distributed program. It shows an implementation that illustrates each
design, and discusses techniques including application-level gateways and tunneling. In
addition, it reviews several standard application protocols, and uses them to illustrate
the algorithms and implementation techniques.

The revision follows the latest standards. For example, code in examples has been
rewritten to use ANSI C, and the chapter on NFS discusses changes in version 3. In ad-
dition, new sections have been added to explain concepts behind programs like slirp
that provide Intemet access across a dialup telephone connection. The discussion of
ways client-server systems fail has been expanded: an entire new chapter focuses on
deadlock and livelock. The chapter examines causes of the problems and techniques for
preventing them. Finally, minor typos and ambiguities in wording have been corrected
throughout the text.

The code is available on-line. To access a copy via the Web, look for Volume 3 in
the list of networking books at location:

hitp://www.cs.purdue.edu/homes/comer/books.html
To access the code via FTP, use location:
ftp://ftp.cs.purdue.edu/pub/Xinw/TCPIP-vol3 bsd.dist.tar.Z

The organization of the text remains the same as the previous version. Beginning
chapters introduce the client-server paradigm and the socket interface that application
programs use to access TCP/IP protocel software. They also describe concurrent
processes and the operating system functions used to create them. Chapters that follow
the introductory material discuss client and server designs.

The text explains that the myriad of possible designs are not random. Instead, they
follow a pattern that can be understood by considering the choice of concurrency and
transport. For example, one chapter discusses a nonconcurrent server design that uses
connection-oriented transport (e.g., TCP), while another discusses a similar design that
uses connectionless transport (e.g., UDP). Xy

Preface

We describe how each design fits into the space of possible implementations, but
do not try to develop an abstract ‘‘theory’’ of client-server interactions. Instead, we em-
phasize practical design principles and techniques that are important to programmers.
Each technique has advantages in some circumstances, and each has been used in work-
ing software. We believe that understanding the conceptual ties among the designs will
help the reader appreciate the strengths and weaknesses of each approach, and will
make it easier to choose among them.

The text contains example programs that show how each design operates in prac-
tice. Most of the examples implement standard TCP/IP application protocols. In each
case, we tried to select an application protocol that would convey a single design idea
without being too complex to understand. Thus, while few of the example programs are
exciting, they each illustrate one important concept. This version of Volume 3 uses the
BSD UNIX socket mechanism in all programming examples; a companion edition con-
tains the same examples using AT&T's TLI protocol interface.

Later chapters discuss the remote procedure call concept and describe how it can
be used to construct distributed programs. They relate the remote procedure call tech-
nique to the client-server model, and show how software can be used to generate client
and server programs from a remote procedure call description. The chapters on TEL-
NET show how small details dominate a production program and how complex the
code can become for even a simple, character-oriented protocol.

Much of the text concentrates on concurrent processing. Many of the concepts
described may seem familiar to students who have written concurrent programs because
they apply to all concurrent programs, not only network applications. Students who
have not written concurrent programs may find the concepts difficult.

The text is suitable for a single semester introductory metworking course at the
senior or graduate level. Because the text concentrates on how to use an internet rather
than on how it works, students need little background in networking to’ understand the
material. No particular concept is too difficult for lower level courses as long as the in-
structor proceeds at a suitable pace. A basic course in operating systems concepts or
experience with concurrent programming may provide the best background.

Students will not appreciate the material until they use it first hand. Thus, any
course should have programming exercises that force the students to apply the ideas to
practical programs. Undergraduates can learn the basics by repeating the designs on
other application protocols. Graduate students should build more complex distributed
programs that emphasize some of the subtle techniques (e.g., the: concurrency manage-
ment techniques in Chapter 15 and the interconnection techniques in Chapter /7).

Many people deserve credit for their help. Members of the Internet Research
Group at Purdue contributed technical information and suggestions to the original text.
Christine Comer edited the revision and improved both wording and consistency.

Douglas E. Comer
David L. Stevens

X

Contents

Foreword xxiii
Prefacé XXV
Chapter 1 Introduction And Overview 1

1.1 Use Of TCP/IP 1

1.2 Designing Applications For A Distributed Environment 2
1.3 Standard And Nonstandard Application Protocols 2

1.4 An Example Of Standard Application Protocol Use 2

L5 An Example Connection 3

I'6 Using TELNET To Access An Alternative Service 4

1.7 Application Protocols And Software Flexibility 6

1.8 Viewing Services From The Provider’s Perspective 6

1.9 The Remainder Of This Text 7

1.10 Summary 7

Chapter 2 The Client Server Model And Software Désign 9

2.1 ‘ Introduction 9
2.2 Motivation 10
2.3 Terminology And Concepts 10

231
232

233

234
235
2.36
237

Clients And Servers 10

Privilege And Complexity 11

Standard Vs. Nonstandard Client Software 11
Parameterization Of Clients 12

Connectionless Vs. Connection-Oriented Servers 13
Stateless Vs. Stateful Servers 14

A Stateful File Server Example 14

vii

Chapter 3 Concurrent Processing In Client-Server Software

24

3.1
3.2
3.3
34

3.5

3.6
37
3.8
3.9

2.3.8 Statelessness Is A Protocol Issue

2.3.9 Servers As Clients 17
Summary 18

Introduction 21

Concurrency In Networks 21
Concurrency In Servers 23
Terminology And Concepts 24

3.4.1 The Process Concept 25

3.4.2 Programs vs. Processes
3.4.3 Procedure Calls 26

25

16

An Example Of Concurrent Frocess Creation
26

3.5.1 A Sequential C Example
3.5.2 A Concurrent Version
3.5.3 Timeslicing 29

27

3.54 Making Processes Diverge

Executing New Code 31

30

26

Context-Switching And Protocol Software Design

Concurrency And Asynchronous /0 32

Summary 33

Chapter 4 Program Interface To Protocols

4.1
4.2

4.3
44
4.5
4.6
4.7
4.8
4.9

Introduction 35

Loosely Specified Protocol Software Interface
4.2.1 Advantages And Disadvantages

Interface Functionality 36

Conceptual Interface Specification

System Calls 37

Two Basic Approaches To Network Communication

37

36

35

The Basic I/0 Functions Available In UNIX 39
Using UNIX I/O With TCP/IP 40

Summary 40

Chapter 5 The Socket interface

vl

5.1
52
5.3

Introduction 43
Berkeley Sockets 43
Specifying A Prosocol Interface

44

32

38

Contents

21

35

43

Contents

54

5.5
5.6
5.7

5.8
5.9
5.10
5.11

The Socket Abstraction 45

5.4.1 Socket Descriptors And File Descriptors 45
5.4.2 System Data Structures For Sockets 46
5.4.3 Using Sockets 47

Specifying An Endpoint Address 47

A Generic Address Structure 48

Major System Calls Used With Sockets 49

571 The Socket Call 49

5.7.2 The Connect Call 50

5.7.3 The Write Call 50

574 The Read Call 50

5.7.5 The Close Call 50

5.7.6 The Bind Call 51

5.7.7 The Listen Call 51}

5.7.8 The Accept Call 51

5.7.9 Summary Of Socket Calls Used With TCP 51
Utility Routines For Integer Conversion 52

Using Socket Calls In A Program 53

Symbolic Constants For Socket Call Parameters 54
Summary 54

Chapter 6 Algorithms And Issues In Client Software Design

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17

6.18

Introduction 57

Learning Algorithms Instead Of Details 57
Client Architecture 58

Identifying The Location Of A Server 58

Parsing An Address Argument 60

Looking Up A Domain Name 61

Looking Up A Well-Known Port By Name 62
Port Numbers And Network Byte Order 62
Looking Up A Protocol By Name 63

The TCP Client Algorithm 63

Allocating A Socket 64

Choosing A Local Protocol Port Number 65

A Fundamental Problem In Choosing A Local IP Address = 65
Connecting A TCP Socket To A Server 66
Communicating With The Server Using TCP 66
Reading A Response From A TCP Connection 67
Closing A TCP Connection 68

6.17.1 The Need For Partial Close 68

6.17.2 A Partial Clese Operation 68
Programming A UDP Client 69

57

Contents

6.19 Connected And Unconnected UDP Sockets 69
=620 Using Connect With:UDP 10

6.21 .Communicating With A Server Using UDP 70

6.22 Closing A Socket That Uses UDP 70

6.23 Fartial Close For UDP 71

6.24 A Warning About UDP Unreliability 71

6.25 Summary 71

Chapter 7 Example Client Software 75

7.1 Introduction 75

7.2 The Importance Of Small Examples 75

7.3 Hiding Details 76

7.4 An Example Procedure Library For Client Programs 76
7.5 Implementation Of ConnectTCP 77

7.6 Implementation Of ConnectUDP 78

7.7 A Procedure That Forms Connections 79

7.8 Using The Example Library 81

7.9 The DAYTIME Service 82

7.10 Implementation Of A TCP Client For DAYTIME 82
7.11 Reading From A TCP Connection 84

7.12 The TIME Service 84

7.13 Accessing The TIME Service 85

7.14 Accurate Times And Network Delays 85

7.15 A UDP Client For The TIME Service 86

7.16 The ECHO Service 88

7.17 A TCP Client For The ECHO Service 88

7.18 A UDP Client For The ECHO Service 90

7.19 Summary 92

Chapter 8 Algorithms And lssues In Server Software Design 95

8.1 Introduction 95

82 The Conceptual Server Algorithm 95

83 Concurrent Vs. Iterative Servers 96

8.4 Connection-Oriented Vs. Connectionless Access 96
8.5 Connection-Oriented Servers 97

8.6 Connectionless Servers 97

8.7 Failure, Reliability, And Statelessness 98

8.8 Optimizing Stateless Servers 99

8.9 Four Basic Types Of Servers 101

8.10 Request Processing Time 102

Contents

8.11 Irerative Server Algorithms 102

812 An lterative, Connection-Oriented Server Algorithm 103
8.13 Binding To A Well-Known Address Using INADDR_ANY
8.14 Placing The Socket In Passive Mode 104

8.15 Accepting Connections And Using Them 104

8.16 An lterative, Connectionless Server Algorithm 104

8.17 Forming A Reply Address In A Connectionless Server 105

8.18 Concurrent Server Algorithms. 106
8.19 Master And Slave Processes 106
820 A Concurrent, Connectionless Server Algorithm 107

821 A Concurrent, Connection-Oriented Server Algorithm 107

8.22 Using Separate Programs As Slaves 108

. 823 Apparent Concurrency Using A Single Process 109
824 When To Use Each Server Type 110
8.25 A Summary of Server Types 111
826 The Important Problem Of Server Deadlock 1 12
8.27 Alternative Implementations 112
828 Summary 113

Chapter 9 Iterative, Connectionless Servers (UDP)

9.] Introduction 115

9.2 Creating A Passive Socket 115
9.3 Process Structure 119

9.4 An Example TIME Server 119
9.5 Summary 121

Chapter 10 Iterative, Connection-Oriented Servers (TCP)

10.1 Introduction 123

10.2 Allocating A Passive TCP Socket 123

10.3 A Server For The DAYTIME Service 124

10.4 Process Structure 124

10.5 An Example DAYTIME Server 125

10.6 Closing Connections 128

10.7 Connection Termination And Server Vulnerability 128
10.8 Summary 129

103

115

123

Xi

Chapter 11 Concurrent, Connection-Oriented Servers (TCP)

11.1 Introduction 131

11.2 Concurrent ECHO 131

1.3 lerative Vs. Concurrent Implementations 132
11.4 Process Structure 132

11.5 An Example Concurrent ECHO Server 133
11.6 Cleaning Up Errant Processes 137

1.7 Summary 138

Chapter 12 Single-Process, Concurrent Servers (TCP)

12.]1 Introduction 139

12.2 Data-driven Processing In A Server 139

12.3 Data-Driven Processing With A Single Process 140
12.4 Process Structure Of A Single-Process Server 141
12.5 An Example Single-Process ECHO Server 142

2.6 Summary 144

Chapter 13 Multiprotocol Servers (TCP, UDP)

13.1 Introduction 147

13.2 The Motivation For Reducing The Number Of Servers 147
13.3 Multiprotocol Server Design 148

134 Process Structure 148

13.5 An Example Multiprotocol DAYTIME Server 149

13.6 The Concept Of Shared Code 153

13.7 Concurrent Multiprotocol Servers 153

13.8 Summary 153

Chapter 14 Multiservice Servers (TCP, UDP)

14.1 Introduction 155

14.2 Consolidating Servers 155

14.3 A Connectionless, Multiservice Server Design 156

14.4 A Connection-Oriented, Multiservice Server Design 157

14.5 A Concurrent, Connection-Oriented, Multiservice Server 158
14.6 A Single-Process, Multiservice Server Implementation 158
14.7 Invoking Separate Programs From A Multiservice Server 159
14.8 Multiservice, Multiprotocol Designs 160

Xi

Contents

131

139

147

155

Contents

14.9

14.10
14.11
14.12
14.13

An Example Multiservice Server 161

Static and Dynamic Server Configuration 168
The UNIX Super Server, Inetd 169

An Example Inetd Server 171

Summary 173

Chapter 15 Uniform, Efficlent Management Of Server Concurrency

15.1
15.2
153
154
155
15.6
15.7
158

159

15.10
15.11
15.12

Introduction 175

Choosing Between An Iterative And A Concurrent Design 175
Level Of Concurrency 176

Demand-Driven Concurrency 177

The Cost Of Concurrency 177

Overhead And Delay 177

Small Delays Can Matter 178

Process Preallocation 179

15.8.1 Preallocation In UNIX 180

15.8.2 Preallocation In A Connection-Oriented Server 180
15.8.3 Preallocation In A Connectionless Server 181
15.84 Preallocation, Bursty Traffic, And NFS 182

15.8.5 Process Preallocation On A Multiprocessor 183
Delayed Process Allocation 183

The Uniform Basis For Both Techniques 184

Combining Techniques 185

Summary 185

Chapter 16 Concurrency In Clients

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
16.10

Introduction 187

The Advantages Of Concurrency 187

The Motivation For Exercising Control 188
Concurrent Contact With Multiple Servers 189
Implementing Concurrent Clients 189

Single-Process Implementations 191

An Example Concurrent Client That Uses ECHO 192
Execution Of The Concurrent Client 196
Concurrency In The Example Code 197

Summary 198

175

187

A

Chapter 17 Tunneling At The Transport And Application Levels

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9

Introduction 199

Multiprotocol Environments 199

Mixing Network Technologies 201

Dynamic Circuit Allocation 202

Encapsulation And Tunneling 203

Tunneling Through An IP Internet 203

Application-Level Tunneling Between Clients And Servers 204
Tunneling, Encapsulation, And Dialup Phone Lines 2035
Summary 206

Chapter 18 Application Level Gateways

18.1
18.2

183
184
185
186
18.7
18.8
18.9
18.10
18.11
18.12
18.13
18.14
18.15
18.16
18.17
18.18
18.19

Introduction 209

Clients And Servers In Constrained Environments 209
18.2.1 The Reality Of Multiple Technologies 209

18.2.2 Computers With Limited Functionality 210

18.2.3 Connectivity Constraints That Arise From Security 210
Using Application Gateways 211

Interoperability Through A Mail Gateway 212
Implementation Of A Mail Gateway 213

A Comparison Of Application Gateways And Tunneling 213
Application Gateways And Limited Functionality Systems 215
Application Gateways Used For Security 216

Application Gateways And The Extra Hop Problem 217

An Example Application Gateway 219

Implementation Of An Application Gateway 220

Code For The Application Gateway 221

An Example Gateway Exchange 223

Using Rfcd With UNIX’s forward 223

A General-Purpose Application Gateway 224

Operation Of SLIRP 224

How SLIRP Handles Connections 225

IP Addressing And SLIRP 225

Summary 226

Chapter 19 External Data Representation (XDR)

19.1
19.2

Xiv

Introduction 229
Representations For Data In Computers 229

Contents

199

209

229

Contents

19.3 The N-Squared Conversion Problem 230
19.4 Network Standard Byte Order 231
19.5 A De Facto Standard External Data Representation 232
19.6 XDR Data Types 233
19.7 Implicit Types 234
19.8 Software Support For Using XDR 234
19.9 XDR Library Routines 234
19.10 Building A Message One Piece At A Time - 234
19.11 Conversion Routines In The XDR Library 236
19.12 XDR Streams, I/O, and TCP 238
19.13 Records, Record Boundaries, And Datagram I/0 239
19.14 Summary 239
Chapter 20 Remote Procedure Call Concept (RPC) 241
20.1 Introduction 241
20.2 Remote Procedure Call Model 241
20.3 Two Paradigms For Building Distributed Programs 242
20.4 A Conceptual Model For Conventional Procedure Calls 243
20.5 An Extension Of the Procedural Model 243
20.6 Execution Of Conventional Procedure Call And Return 244
20.7 The Procedural Model In Distributed Systems 245
20.8 Analogy Between Client-Server And RPC 246
20.9 Distributed Computation As A Program 247
20.10 Sun Microsystems’ Remote Procedure Call Definition 248
20.11 Remote Programs And Procedures 248
20.12 Reducing The Number Of Arguments 249
20.13 Identifying Remote Programs And Procedures 249
20.14 Accommodating Multiple Versions Of A Remote Program 250
20.15 Mutual Exciusion For Procedures In A Remote Program 251
20.16 Communication Semantics 252
20.17 At Least Once Semantics 252
20.18 RPC Retransmission 253
20.19 Mapping A Remote Program To A Protocol Port 253
20.20 Dynamic Port Mapping 254
20.21 RPC Port Mapper Algorithm 255
20.22 ONC RPC Message Formar 257
20.23 Marshaling Arguments For A Remote Procedure 258
20.24 Authentication 258
20.25 An Example Of RPC Message Representation 259
20.26 An Example Of The UNIX Authentication Field 260
20.27 Summary 26!

XV

Contents

Chapter 21 Distributed Program Generation (Rpcgen Concepty 265

21.1
21.2
21.3
214
21.5
21.6
21.7
218
21.9
21.10
2111
21.12
2113

Introduction 265

Using Remote Procedure Calls 266

Programming Mechanisms To Support RPC 267
Dividing A Program Into Local And Remote Procedures 268
Adding Code For RPC 269

Stub Procedures 269

Multiple Remote Procedures And Dispatching 270
Name Of The Client-Side Stub Procedure 271

Using Rpcgen To Generate Distributed Programs 272
Rpcgen Output And Interface Procedures 272

Rpcgen Input And Qutpur 273

Using Rpcgen To Build A Client And Server 274
Summary 274

Chapter 22 Distributed Program Generation (Rpcgen Example) 277

Vi

22.1
22.2
22.3
224
225
226
22.7
22.8
22.9
22.10
22.11
22.12
22,13

22.14
22.15
22.16
22.17
2.18

Introduction 277

An Example To Hlustrate Rpcgen 278

Dictionary Look Up 218

Eight Steps To A Distributed Application 279

Step 1: Build A Conventional Application Program 280
Step 2: Divide The Program Into Two Parts 284
Step 3: Create An Rpcgen Specification 290

Step 4: Run Rpcgen 292

The .h File Produced By Rpcgen 292

The XDR Conversion File Produced By Rpcgen 293
The Client Code Produced By Rpcgen 294

The Server Code Produced By Rpcgen 296

Step 5: Write Stub Interface Procedures 299

22.13.1 Client-Side Interface Routines 299

22.13.2 Server-Side Interface Routines 301

Step 6: Compile And Link The Client Program 303
Step 7: Compile And Link The Server Program 307
Step 8: Start The Server And Execute The Client 309
Using The UNIX Make Utility 309

Summary 311

