VOI. |

iRt YR =

- Theoretical Computer Science

Wmd
Eﬂt@m%’l%]ﬂ%

Vol. 1
GHEHBIAS RBRERLSH

£ ¥R ¥ B R W IR

CGPHMEBEFIN T

FigHRne
Vol.1

<HEHANBPHREZREN

*

LA BRSO H AR AL AR R AT
(LR TR 2 5)

cR LA¥YLEEH
L ¥ERHRSOR R BUWRKE T R R

*
FA 850x1168 1/32 AIFK 6.125 164,000

199242 6 BB 1M 19924E 6 AM 1 KEV B
B ¥, 1—1,500

1SBN 7-80513-926-1/T219

£ #h 4.6530
<P %7 % B2259-286

CEBIHTBIRFYRES

X 4 4
2xh (PHEREAKHTTH)
HERERRE
0. L. Liu(University of Illinois)
J. A. Robinson (Syraouse University)
Robert 8. Boyer(University of Texas at Austin)
R. M. Karp (University of Qalifornia, Berkly)
Stepher A, Oook (University of Toronto) :
HiFs% # 8% (Three Int Systems Technology)
B 7 B H] i &
Hule (PAHBREREFTH)
(O F 4 K LX)
=4 (E#EFENBERLATFLFS)
HAaE (LEREXF)
F # (EIMXFE)
A4 LAk XFE)
MxE (BB
AgL (FPHREKEFLTH)
i (RFEXF)
sl (T HER)
R (HhFxFE)
B X %
wEE (AR 84S RA)
i (RFHENFR)
2Ek (LHTEXRF)

m B
IR
oA
X B
F1E
FhH
M At
#»Ek
R g
Hhike
BT X
s & .3

FAp AL
LR
b R K
#IF X F

i Mk,

(T XFHRK)
(FRLFR)
(L2x%)
(ERFERS)
(k&=L K¥F)
(& k%) s
(ed x %) _

(¥ iz %)

(b x5))
(et Engr)

Gl &k 8) '

X¥ HELFER AFHEMER
X#ERIT k¥ #Hizk#F
TH XS
<HIE T H LB

" £ 2
1988 4 5 K

LA R AR A <2t AL 243
LiET ARG =T wif, 4373707 #psm. 200031

B
=]

Wk, BERUEHNAZ CERNHEHIRE T Y
— Mok, EEAERTENHZEL -0
X, FECHFRTEE, BE2RULF, BR—H. Eh
HHENMERFERENFR T HERNRERE L T 48, XIF
FRETERHAEWNEN 0 252X, BRMEFXT
AT, LTHRk— AR BT ENE L WEUR
BWEN., HEARREHRAELRE HENHRFERE
RELW—MERAINTE, BHTREREEE B
ZABAITENAE. BRHFAAFENNE CREE,
I E SRR, S0 THERE &% BF R
JEEM NBRAERENHR, FREFHHE, X
B OEAMREAESTATERE LT HH, ERITHAN
AETUAEHEWEFER, TS HENXHHY
Hy & R AL

HEFHENHEERAGTHE, WENERE
ARWER, EAARLEEN AR N EME, X FHE
MBLWEDFERLTTIWEES R NAEHEAL
BRI TRAELE LRI HENWFE, ARABRE
I-AEREN, EHE-RERFTENRFREIR, 7N
A5 R¥, AURSEERFRANLR X—RER
FENS-BELEEUWRDFIE. ARAE H @
AEEBRER, LT ER - BER T HAHF P
HBRAENESUE, HERESW-REZRR, RNES

e 1 o

THAAH, FERUABABR TN EHR RS XRL
H-BRR A EA.
HREFBWER G, AREEXRBHXH R X
X)F R, P XEEREXHE, EXHERFXRE, &
FAHRAEEFREFER R,
#ﬂ&%*ﬁﬁ%zﬁﬁm%h-ﬁflﬁﬁ ¥ M
KRR R AT SNBSS B, RNESA AR
84 % ® Kuodou J. Huang # 1 & ¥ @ A8 P iy A

RRFREY. FEAHUBEWERLIRBRK W AR

w, RHENSAERTERTE S,

«<HEHENHPHRES
199148 B

-

«H e it ﬁ_m B

Vol. 1
H x
— mmﬁ%&gﬁ%&ﬁﬁ%ﬁlﬁ_ (1)
T BSLFE— BB O L RO R B RS (42)
. EEAMEBILE BTG o ereerereeeraaann (63)
T, ZHRIAER v, (87)
B, ETESBZAMIE KRR (112)
TN BRE IR B A B — PO BE AL Bk R B i
ﬁ:‘ﬁ;ﬁ ... (127)
.,[:‘ %ﬁﬁ?ﬁﬁ%ﬁﬁiﬂj%ﬁ% (133)
N, HETRBERFEH TN Tk 2 G v eereeeeeeee (162)
. HABFESWoBETHR—OD ¥ $o
BERBE e (175)

CONTENTS

1. Methodology and Tool for Object-oriented Da~

tabhase DeIgn reeecsersressnnrmiiniiininiiiiiiins (1)
2. The Theory of Database Design Based on first

Order Prodicate Qaleulus e -cereereerresrvasenees (42)
8. The study of the Mechanism of language Pro-

duoction and Understanding «-«.oeoreeseicnienes (63)
4. Fuzzy Default ReaSONING: s ovesereessaraatemenienns (87)
5. On Chromatic Unigueness of Complement of

union of Oyole and path ««eccererermiiiinniasanens (112)-

6. The Statistical Analysis of a Kind of Pseud-
orandom Number Generator in The Environ-
ment of Security ercereererereeecnrrneensnaneneen (127)

7. Optimal Regidual Algorithms for linear Ope-
Tator Bquations «ccccovcecercicienirieiaiiinnee. (j_33)e

8. Deecision Problems of Deadlock and Fairness
in the Parallel System «--«:--ersversuces [T (162)

9. Theory of Languages with Separate Symtol
$ (I): operations on w-Languages with § ------ (175)

10. About the Properties of Perpetuel Processes (181)

METHODOLOGY AND TOOL FOR
OBJECT-ORIENTED
DATABASE DESIGN

Qolette Rolland and Corine Cauvet
Université Paris I Ufr 06
17, Rue de la Sorbonne 75231 Paris Dedex &

Ohritophe Proix
Université Paris VI Laboratoire Masi
4, Place Jussieu 75005 Paris

ABSTRACT

"The paper deals with objeot-oriented database
design. It aims at presenting a design methodology
supported by an expert design tool.

The methodology combines an object-0 riented
model and & step-wise design approach.

Using the object-oriented model, the database is
modeled as & sooiety of objects interacting through
.events. The database schema is also viewed as a collec-

tion of objects including statio objects (entities and
domains)and dynamic objects (actions and events).
Tach object of the database schema has struotural
and behavioural properties which are encapsulated
in the ohject scheme description. Each objeot belongs
to one of the predefined object types of the model.

Design is organized in three steps: ident:fication,
st ructuration and refinement applying to static ob
jeots as well a5 dynamic objects.

The tool aims at supporting “intelligently” the
design process itself. It helps the designer by infer-
ring design solutions, by proposing alternative
problem solving ways and by ohecking design
products, '

1. Introduction

Programming languages are more and more intensively
object-oriented [GOLD. 83], [ROOH. 86], [BOBR. 83] and
[MOON. 80]. Experiences in object-oriented programming
demonstrate an increased productivity of programming teams-
due to the modularity of programs, their adaptabiliiy and
readibility.

In databases, the idea of representing in database schemas:
both-structural and behavioural properties of objects is not
new [ROLL. 79], [ROLL. 82], [GUST. 82] and [BROD. 82]
and demonstrated its advantage in database application
development, The current tendancy is to base database design
on models that are able to capture the semantic of the real-
world with more precision and naturalness. Many semantic
dsta models have been proposed TAXIS [MYLO. 80], SHM
[SMIT. 77], SDM [HAMM, 81], SHM* [BROD. 82]. Except
some differonces in the formalization and in expression of
gome constraints, the models provide similar concepts of
objeot classification, aggregation and generalization.

These two trends highlight some convergence both in the-
domain of datatases and in the field of programming

Janguages to an object-oriented approach.

In databases, this approach starts to be implemented in
DBMS[KIM. 88],[LECL. 88] and [PENN, 87].

Nevertheless there does not exist methodologies to support
-object-oriented database design.

Based on our experience in traditional databases design,
we started to develop a methodology combining objeot-
oriented concepts (the O*-model), with a step-wise design
approach (the O*-method). Experiencing the methodology on
real applications leads us to develop a computer aided design
tool (the O*t-00l) to assist the designer at eaoh step of the
methodology. '

This paper is organized as follows, We present in section
2 the basic objeot-oriented concepts of the O*-model and the
basio rules to manipulate concepts for designing database
schemas, In section 3 we review the three main steps of the
O*-method and the subsequent sub-steps. Seotion 4 foousses
on the O*—tool to explain how it supports designers in the
design of O*-schemas,

2. Basic Object—oriented Concepts

In this section we review the basio object-oriented
coneepts of the O*-model and their use for designing object-
oriented databases.

2.1 Object-Oriented Concepts, Object-Oriented Pa

radi-gm, 0* Schema

The model provides object-oriented concepts and an
object-oriented paradigm,

Concepts are predefined types of objects which a.llow to

» 3 f

modelize any conoceptual entity of the object-oriented database
as an objeot. An ordinary integer or string is as much an
object as a complex entity as a hotel or a customer; a single
value like a price of a room as well as a complex value like an
address are also regarded as objects. Aotions such as room-
reservation or room-request and events such as request-arrival
or room-availability are considered as objeots too.

Acoording to the objett-oriented paradiam any object is
considered as having structural, behavioural and inherited
properties that are encapsulated in the object dessription of
the database oconceptual schema, socalled O*-schema. As
model-coneepts are viewed as objects, the object-oriented.
paradigm applies also to concepts.

Thus, any object is structured, active, encapeulated and
1yped. Wo desoribe in turn these four characteristics of
ohjects,

22 Object Structure

For the structuration of objeots, O*~provides two forms of
structural abstraction to relate objects: aggregation and
greuping.

Aggregation [SMIT, 77] is a form of a bstraction in
which arelationship between component objeots is considered
as a higher level aggregate object. This is the part-of rela-
tionship. For example, ROOM may be an aggregate of
components ROOM-NUMERO, ROOM-PRICE and ROOM-
CATEGORY. '

Grouping is a form of abstraction in which a relationship-
Detween member objects is considered as a higher level set
object. This is the member-of relationship. For example the-
get HOTEL-UNION is a group of HOTEL members,

LI I

Static schemes are diagrammatio tools to aid structure
design and to graphically represent the objeots and the
structural: relationships, The graphio notations for the two
forms of abstraction are examplified in Figure 2.1,

ROi)M HOTEL-UNION

* T
I 'ROOM-PRICE |
ROOM-NUMERO ROOM-CATEGORY HOTEL

aggregate object set object

Figure 2.1 Static schemes

2.3 Object Behaviour, Encapsulation

For the design of hehavioural properties of objeots, O*
provides two concepts: action and event.

Actions are elementary database operations whioh alter
objects (e. g. add a new room, modify a reservation ---). The
state ohange of an object can activate an event., Events
represent elementary state changes in the objeot database that
must trigger certain actions (e. g. when a room-request
arrives, create the room-reservation if possible and otherwise
postpone the request).

Therefore, interaction among the different objects consist
of event sharing. No other form of communication is allowed.

The deseription of actions is defined in the action-text.
The desoription of the event ocourrence condition is defined
in the event-predicate. Action triggering is described in the
triggerdeclaration. Action-texts, event-predicates and trigger
declarations, if expressed in an exeoutable code, can be assi-

milated to methods. The desoription of the objectb ehaviour is

encapsulated with the desoription of its strueture.

Action-texts, event-predicates and trigger-deolarations
are part of the definition of the object. However, as methods,
they are not visible from outside the object. For each event
activated by an object there are corresponding actions that
execute actiontexts on related objects. An object can react to
an action by activating an event, Events constitute the
interface of objects. '

Dynamio schemes are diagrammatic tools for the design
of behavioural properties of objects. Figure 2.2 gives the
graphio notation for actions and events related to an object.

INSERT-ROOM CLOSE-ROOM e ACTION
MODIFY-BED-NB MODIFY-CATEGORY

ROOM-CLOSURE- ROOM-AVAILABILITY()OBJECT

Figure 2.2 The ROOM object dynamic scheme

24 Type, Type Hierachy, Meta-type

Typing is a form of abstraction in which a collection of
objeots is considered as a higher level object type. An object
type is a precise characterization of all structural and beha-
vioural properties shered by each object in the collestion. An
object is an instance of an object type if it has the structure
and behaviour defined in the type. Typing represents an
instance-of relationship between an object type in a O*-
sohems and an object in a database. For example the objeot
type ROOM described by its statio scheme in Figure 2.1 and
its dynamio scheme in Figure 2.2 defines aggregate objecis

in the database like {14, 230, “+x*’"> with action values like
“insert (14, 250, “*=x”>" and event values like *“on delete
{14, 250, “xxn’’P”,

O*-sohema /8 a collection of types whioh are regarded as
cbjeots.

The olassification of types can be expressed in a genera- -
lization hierarchy. Genera-lization is a form of abstraction in
which a set of types is viewed as one generioc type. A type
hierarchy is a hierarchy of types in which an edge between a
pair of nodes represents the is-a relationship. The lower level
node is a specialization of the higher level node. For example
the generio type RESORT may be a generalization of types
SKI-RESORT and SEA-RESORT. Structural and beha
vioural properties for a type are inherited by all its specialized
types.

The graphio notation for an “is-a” relationship is
illustrated in the hierarchical scheme in Figure 2.3.

Any type of a O*-sohema must belong to & model
predefined type (also called meta-type). Meta types are object
types olassified in a generalization presented in Figure 2.4

RESORT

SKI-RESORT =~ SEA-RESORT

Figure 2.3 Graphic representation of an is-a hierarchy

The root of the hierarchy is the model defined type

OBJEQOT. ‘
The instances of the type METATYPE are the set of

o T o

OBJECT

TEXT BASE

DOMAIN ENTITY AGGREGATE SET

EVENT ACTION SCALAR SIMPLE

Figure 2.4 Model meta-type hierarchy

model predefined object types. ENTITY, ACTION, EVENT
and DOMAIN are examples of METATYPES instances.

The objeots in a O*-schema are instances of TYPE i. e.
instances of ENTITY, AOTION, EVENT and DOMAIN, For
example, the objeot type ROOM (see Figures2.1et 2.2) is
an object of the predefined type ENTITY.,

The instances of predefined type TEXT represent
aotion-texts, event-predicates and trigger declarations.

The instances of the predefined type BASE are objeots
used o build other objeots.

25 0*-Schema, O*-Database

A O"-database can be viewed as a society of objeots
which interact through events.

A O*-sohema desoribes the society of objeots and their
interactions. It is composed of object definitions such as:

(i) each O*-schema object represenis a database object
type. Its definition requires three parts:

-a statis part (S8T) related to the object structurs,
-a dynamio part (DY) including action and event
definitions,

