大学计算机教育丛书(影印版)

SECOND EDITION

COMPUTER GRAPHICS

C VERSION

计算机图形学

C语言版

(第二版)

DONALD HEARN M. PAULINE BAKER

清华太学出版社

PRIENTICE HALL

1-126-2 2,

SECOND EDITION.

Computer Graphics

C Version

计算机图形学 C 语言版

(第2版)

Donald Hearn

Department of Computer

Science and National Center

for Supercomputing Applications

University of Illinois

M. Pauline Baker

National Center for Supercomputing Applications University of Illinois

00414040

清华大学出版社 Prentice-Hall International, Inc.

(京)新登字 158号

JS/32//S

Computer graphics, C version, 2nd Ed./Donald Hearn, M. Pauline Baker

©1997, 1994, 1986 by Donald Hearn and M. Pauline Baker

Original edition published by Prentice Hall, Inc., a Simon & Schuster Company.

Prentice Hall 公司授权清华大学出版社在中国境内(不包括中国香港特别行政区、澳门地区和台湾地区)独家出版发行本书影印本。

本书任何部分之内容,未经出版者书面同意,不得用任何方式抄袭、节录或翻印。

本书封面贴有 Prentice Hall 激光防伪标签,无标签者不得销售。

北京市版权局著作权合同登记号: 01-98-0006

图书在版编目(CIP)数据

计算机图形学: C语言版: 第2版: 英文/(美)赫恩(Hearn, D.), (美)贝克(Baker, M.P.) 著. - 影印本. - 北京: 清华大学出版社,1998.1

(大学计算机教育从书)

ISBN 7-302-02771-4

I. 计··· Ⅱ. ①赫··· ②贝··· Ⅲ. 计算机图形学-英文 Ⅳ. TP391.4

中国版本图书馆 CIP 数据核字(97)第 26230 号

出版者,清华大学出版社(北京清华大学校内,邮编 100084)

http://www.tup.tsinghua.edu.cn

印刷者:清华大学印刷厂

发行者: 新华书店总店北京科技发行所

开 本: 787×1092 1/16 印张: 42.125 彩插: 12面

版 次:1998年2月第1版 1998年8月第2次印刷

书 号: ISBN 7-302-02771-4/TP·1442

印 数:5001~10000

定 价: 68.00元

出版前言

我们的大学生、研究生毕业后,面临的将是一个国际化的信息时代。他们将需要随时查阅大量的外文资料;会有更多的机会参加国际性学术交流活动;接待外国学者;走上国际会议的讲坛。作为科技工作者,他们不仅应有与国外同行进行口头和书面交流的能力,更为重要的是,他们必须具备极强的查阅外文资料获取信息的能力。有鉴于此,在国家教委所颁布的"大学英语教学大纲"中有一条规定:专业阅读应作为必修课程开设。同时,在大纲中还规定了这门课程的学时和教学要求。有些高校除开设"专业阅读"课之外,还在某些专业课拟进行英语授课。但教、学双方都苦于没有一定数量的合适的英文原版教材作为教学参考书。为满足这方面的需要,我们挑选了7本计算机科学方面最新版本的教材,进行影印出版。首批影印出版的6本书受到广大读者的热情欢迎,我们深受鼓舞,今后还将陆续推出新书。希望读者继续给予大力支持。Prentice Hall 公司和清华大学出版社这次合作将国际先进水平的教材引入我国高等学校,为师生们提供了教学用书,相信会对高校教材改革产生积极的影响。

清华大学出版社 Prentice Hall 公司

1997.11

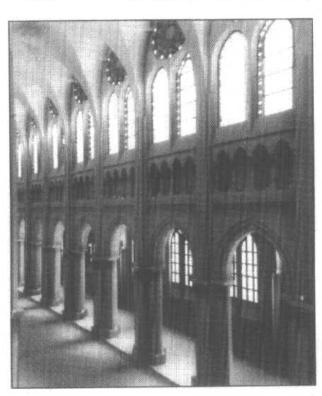

附于书后彩图的图号及页码表

Fig. $1 - 15$	p.10	Fig. 10 – 115	p. 392
Fig. $1 - 28$	p. 16	Fig. 10 – 119	p. 394
Fig. $1 - 40$	p.21	Fig. $10 - 135$	p. 401
Fig. 1 – 49	p.25	Fig. $14 - 24$	p. 508
Fig. $1 - 62$	p.29	Fig. 14 – 26	p. 509
Fig. $2 - 10$	p.44	Fig. $14 - 35$	p. 516
Fig. 9-4	p. 299	Fig. $14 - 50$	p. 528
Fig. $9-7$	p.301	Fig. 14 – 57	p. 533
Fig. 9-8	p.301	Fig. $14 - 60$	p. 535
Fig. $10 - 75$	p.369	Fig. $14 - 87$	p.550
Fig. $10 - 80$	p.371	Fig. 14 – 89	p. 551
Fig. $10 - 82$	p.372	Fig. 14 – 93	p. 553
Fig. $10 - 85$	p.374	Fig. 14 – 98	p. 557
Fig. $10 - 100$	p.383	Fig. $15 - 12$	p. 573
Fig. 10 – 101	p.385	Fig. 16 – 10	p. 590
Fig. $10 - 110$	p.390		

INTERNATIONAL EDITION

COMPUTER GRAPHICS

C VERSION

DONALD HEARN • M. PAULINE BAKER

SECOND EDITION

Preface

Computer graphics remains one of the most exciting and rapidly growing computer fields. Since the appearance of the first edition of this book, computer graphics has now become a common element in user interfaces, data visualization, television commercials, motion pictures, and many, many other applications. Hardware devices and algorithms have been developed for improving the effectiveness, realism, and speed of picture generation, and the current trend in computer graphics is to incorporate more physics principles into three-dimensional graphics algorithms to better simulate the complex interactions between objects and the lighting environment.

Software Standards

Significant improvements in graphics software standards have been developed since the acceptance of the first graphics package, the Graphical Kernel System (GKS), by the International Standards Organization (ISO) and the American National Standards Institute (ANSI). The Programmer's Hierarchical Interactive Graphics Standard (PHIGS) is now both an ANSI and an ISO standard. Both PHIGS and the expanded PHIGS+ packages are widely available. In addition, a number of popular industry packages have emerged, including Silicon Graphics GL (Graphics Library), OpenGL, the Pixar RenderMan interface, PostScript interpreters for page descriptions, and a variety of painting, drawing, and design systems.

New Topics

Because of the tremendous number of changes that have occurred in the field of computer graphics, we decided to completely rewrite the book for the second edition, while maintaining the general organization of the first edition. All topics from the first edition were expanded to include discussions of current technology, and a great many new topics have been added. Topics that have been significantly expanded include antialiasing, fractal and other object-representation methods, ray tracing, spline curves and surfaces, illumination models, surface-rendering methods, and computer animation. New topics that have been added to this second edition include virtual reality, parallel implementations for graphics algorithms, superquadrics, BSP trees, shape grammars, particle systems, physically based modeling, scientific visualization, business visualization, quaternion methods in graphics algorithms, distribution ray tracing, fast-Phong

shading, radiosity, bump mapping, morphing, and discussions of various mathematical methods useful in graphics applications.

This second edition can be used both as a text for students with no prior background in computer graphics and as a reference for graphics professionals. We emphasize basic principles needed to design, use, and understand computer graphics systems. Both hardware and software components of graphics systems are discussed, as well as various applications of computer graphics. We also include programming examples written in C to demonstrate the implementation and applications of the graphics algorithms. And we explore the features of PHIGS, PHIGS+, GKS, and other graphics libraries, while using PHIGS and PHIGS+ functions in the C programs to illustrate algorithm implementations and graphics applications.

Required Background

We assume no prior familiarity with computer graphics, but we do assume the reader has some knowledge of computer programming and basic data structures. A variety of mathematical methods are used in computer graphics algorithms, and these methods are discussed in some detail in the appendix. Mathematical topics covered in the appendix include techniques from analytic geometry, linear algebra, vector and tensor analysis, complex numbers, quaternions, and numerical analysis.

How to Use This Book as a Text

The material in this second edition evolved from notes used in a number of courses we have taught over the past several years, including introductory computer graphics, advanced graphics topics, scientific visualization, and graphics project courses. For a one-semester course, a subset of topics dealing with either two-dimensional methods or a combination of two-dimensional and three-dimensional topics can be chosen, depending on the requirements of a particular course. A two-semester course sequence can be used to cover the basic graphics concepts and methods in the first course and advanced three-dimensional methods and algorithms in the second course. For the self-study reader, early chapters can be used to provide an understanding of graphics concepts, with individual topics selected from the later chapters according to the interests of the reader.

At the undergraduate level, an introductory two-dimensional graphics course can be organized with a detailed treatment of fundamental topics from Chapters 2 through 8 plus the introduction to three-dimensional concepts and methods given in Chapter 9. Selected topics, such as color models, animation, spline curves, or two-dimensional fractal representations, from the later chapters could be used as supplemental material. For a graduate or upper-level undergraduate course, basic two-dimensional concepts and methods can be covered in the first half of the course, with selected topics from three-dimensional modeling, viewing, and rendering covered in the second half. A second, or advanced-topics,

course can be used to cover selected topics from object representations, surface rendering, and computer animation.

Chapter 1 is a survey of computer graphics, illustrating the diversity of applications areas. Following an introduction to the hardware and software components of graphics systems in Chapter 2, fundamental algorithms for the representation and display of two-dimensional graphics objects are presented in Chapters 3 and 4. These two chapters examine methods for producing basic picture components and techniques for adjusting size, color, and other object attributes. This introduces students to the programming techniques necessary for implementing graphics routines. Chapters 5 and 6 discuss two-dimensional geometric transformations and viewing algorithms. Methods for modeling and organizing two-dimensional picture components into separate structures are given in Chapter 7. In Chapter 8, we present graphics methods for user interfaces and for interactive input in various applications, including virtual-reality systems.

Three-dimensional techniques are introduced in Chapter 9. We then discuss in Chapter 10 the different ways that three-dimensional objects can be graphically represented, depending on the characteristics of the objects. Chapter 11 presents methods for modeling and performing geometric transformations in three-dimensions. Methods for obtaining views of a three-dimensional scene are detailed in Chapter 12. The various algorithms for identifying visible surfaces in a scene are discussed in Chapter 13. Illumination models and surface-rendering methods, such as ray tracing and radiosity, are taken up in Chapter 14. Color models and methods are discussed in Chapter 15, and animation techniques are explored in Chapter 16.

Acknowledgments

Many people have contributed to this project in a variety of ways over the years. To the organizations and individuals who furnished photographs and other materials, we again express our appreciation. We also acknowledge the many helpful comments received form our students in various computer graphics and visualization courses and seminars. We are indebted to all those who provided reviews or suggestions for improving the material covered in this book, and we extend our apologies to anyone we may have failed to mention. Thank you: Ed Angel, Norman Badler, Phillip Barry, Brian Barsky, Hedley Bond, Bart Braden, Lara Burton, Robert Burton, Greg Chwelos, John Cross, Steve Cunningham, John DeCatrel, Victor Duvaneko, Gary Eerkes, Parris Egbert, Tony Faustini, Thomas Foley, Thomas Frank, Don Gillies, Jack Goldfeather, Georges Grinstein, Eric Haines, Robert Herbst, Larry Hodges, Eng-Kiat Koh, Mike Krogh, Michael Laszlo, Suzanne Lea, Michael May, Nelson Max, David McAllister, Jeffrey Mc-Connell, Gary McDonald, C. L. Morgan, Gred Nielson, James Oliver, Lee-Hian Ouek, Laurence Rainville, Paul Ross, David Salomon, Günther Schrack, Steven Shafer, Cliff Shaffer, Pete Shirley, Carol Smith, Stephanie Smullen, Jeff Spears, William Taffe, Wai Wan Tsang, Spencer Thomas, Sam Uselton, David Wen, Bill Wicker, Andrew Woo, Angelo Yfantis, Marek Zaremba, and Michael Zyda. Our thanks go also to Robert Burton's Fall 1995 Computer Graphics course at Preface

Brigham Young University for running and testing the C code for this book. And we thank our editor Alan Apt, Sondra Chavez, and the Colorado staff for their help, suggestions, and encouragement during the preparation of this C version of the second edition. To our production editors, Bayani DeLeon and Joe Scordato, and the Prentice Hall staff, we offer our thanks for another outstanding production job. Finally, a special thanks goes to Carol Hubbard for her help in developing the C code.

Urbana-Champaign

Donald Hearn M. Pauline Baker

Contents

PREF	ACE	xvii		Stereoscopic and Virtual-Reality	. 50
1	A Survey of Computer Graphics	2	2-2	Systems Raster-Scan Systems Video Controller	53 53
1-1	Computer-Aided Design	4	2-3	Raster-Scan Display Processor Random-Scan Systems	55 56
1-2	Presentation Graphics	11	2-4	Graphics Monitors and Workstations	5 <i>7</i>
1-3 1-4	Computer Art Entertainment	13 18	2-5	Input Devices Keyboards	60 61
1-5	Education and Training	21		Mouse	61
1-6	Visualization	25		Trackball and Spaceball	63
1-7	Image Processing	32		Joysticks	63
1-8	Graphical User Interfaces	34		Data Glove Digitizers Image Scanners Touch Panels	64 64 67 68
2	Overview of Graphics Systems	35	2-6	Light Pens Voice Systems Hard-Copy Devices	70 70 72
2-1	Video Display Devices Refresh Cathode-Ray Tubes Raster-Scan Displays Random-Scan Displays Color CRT Monitors Direct-View Storage Tubes	36 37 40 41 42 45	2-7	Graphics Software Coordinate Representations Graphics Functions Software Standards PHIGS Workstations Summary References	75 76 77 78 79 79
	Flat-Panel Displays Three-Dimensional Viewing Devices	45 49		Exercises	81

vii

<u>3</u>	Output Primitives	83		Summary Applications References	134 136 140
3-1 3-2	Points and Lines Line-Drawing Algorithms DDA Algorithm	84 86 87		Exercises	140
3-3 3-4	Bresenham's Line Algorithm Parallel Line Algorithms Loading the Frame Buffer Line Function	88 92 94 95	4	Attributes of Output Primitives	143
3-5	Circle-Generating Algorithms Properties of Circles Midpoint Circle Algorithm	97 97 98	4-1	Line Attributes Line Type Line Width	144 144 146
3-6	Ellipse-Generating Algorithms Properties of Ellipses Midpoint Ellipse Algorithm	102 102 103	4-2	Pen and Brush Options Line Color Curve Attributes	149 149 152
3-7	Other Curves Conic Sections Polynomials and Spline Curves	110 110 112	4-3	Color and Grayscale Levels Color Tables	154 155
3-8 3-9 3-10	Parallel Curve Algorithms Curve Functions Pixel Addressing	112 113	4-4	Grayscale Area-Fill Attributes Fill Styles Pattern Fill	157 158 158 159
	and Object Geometry Screen Grid Coordinates Maintaining Geometric Properties of Displayed Objects	114 114 114	4-5	Soft Fill Character Attributes Text Attributes Marker Attributes	162 163 163 167
3-11	Filled-Area Primitives Scan-Line Polygon Fill Algorithm Inside-Outside Tests	117 117 125	4-6	Bundled Attributes Bundled Line Attributes Bundled Area-Fill Attributes	168 168 169
	Scan-Line Fill of Curved Boundary Areas Boundary-Fill Algorithm Flood-Fill Algorithm	126 127 130	4-7	Bundled Text Attributes Bundled Marker Attributes Inquiry Functions	169 170 170
	Fill-Area Functions Cell Array	131 131	4-8	Antialiasing Supersampling Straight Line Segments	171 172
3-14	Character Generation	131		Pixel-Weighting Masks	174

	Area Sampling Straight Line Segments Filtering Techniques	174 174	5-6 5-7 5-8	Affine Transformations Transformation Functions Raster Methods for Transformations	208 208 210
	Pixel Phasing	175	3-0	Summary	210
	Compensating for Line Intensity			References	213
	Differences Anticliacing Area Roundaries	175		Exercises	213
	Antialiasing Area Boundaries	176			
	Summary References	178		Two Dimonsional	
	Exercises	180	6	Two-Dimensional	246
	Exercises	180	0	Viewing	216
			6-1	The Viewing Pipeline	217
_	Two Dimensional Com-		6-2	Viewing Coordinate Reference Frame	
5	Two-Dimensional Geon		6-3	Window-to-Viewport Coordinate	_,,
<u> </u>	Transformations	183	•	Transformation	220
	Davis Tours	101	6-4	Two-Dimensional Viewing Functions	222
5-1	Basic Transformations Translation	184 184	6-5	Clipping Operations	224
	Rotation	186	6-6	Point Clipping	225
	Scaling	187	6-7	Line Clipping	225
5-2	Matrix Representations			Cohen-Sutherland Line Clipping	226
_	and Homogeneous Coordinates	188		Liang-Barsky Line Clipping	230
5-3	Composite Transformations	191		Nicholl-Lee-Nicholl Line Clipping	233
	Translations	191		Line Clipping Using Nonrectangular	
	Rotations	191		Clip Windows	235
	Scalings	192		Splitting Concave Polygons	235
	General Pivot-Point Rotation	192	6-8	Polygon Clipping Sutherland-Hodgeman Polygon	237
	General Fixed-Point Scaling	193		Clipping	238
	General Scaling Directions	193		Weiler-Atherton Polygon Clipping	242
	Concatenation Properties	194		Other Polygon-Clipping Algorithms	243
	General Composite Transformations and Computational Efficiency	195	6-9	Curve Clipping	244
F 4	-		6-10	Text Clipping	244
5-4	Other Transformations Reflection	201 201	6-11	Exterior Clipping	245
	Shear	201		Summary	245
5-5	Transformations Between Coordinate	200		References	248
	Systems	205		Exercises	248

Contents

7	Structures and Hierarch Modeling	ical 250		Accommodating Multiple Skill Levels Consistency	273 274
7-1	Structure Concepts Basic Structure Functions Setting Structure Attributes	250 250 253		Minimizing Memorization Backup and Error Handling Feedback	274 274 275
7-2	Editing Structures Structure Lists and the Element Pointer Setting the Edit Mode Inserting Structure Elements Replacing Structure Elements Deleting Structure Elements Labeling Structure Elements Copying Elements from One Struct to Another	254 255 256 256 257 257 258 ure 260	8-2 8-3	Input of Graphical Data Logical Classification of Input Devices Locator Devices Stroke Devices String Devices Valuator Devices Choice Devices Pick Devices Input Functions	276 276 277 277 277 277 279 279
7-3	Basic Modeling Concepts Model Representations Symbol Hierarchies Modeling Packages	260 261 262 263	0 3	Input Modes Request Mode Locator and Stroke Input in Request Mode	281 282 282
7-4	Hierarchical Modeling with Structures Local Coordinates and Modeling Transformations Modeling Transformations Structure Hierarchies Summary	265 265 266 266 268	,	String Input in Request Mode Valuator Input in Request Mode Choice Input in Request Mode Pick Input in Request Mode Sample Mode Event Mode Concurrent Use of Input Modes	283 284 284 284 285 285 287
0	References Exercises Graphical User Interfact and Interactive Input	269 269 :es	8-4 8-5	Initial Values for Input-Device Parameters Interactive Picture-Construction Techniques Basic Positioning Methods Constraints Grids	287 288 288 288 289
8-1	Methods The User Dialogue	271		Gravity Field Rubber-Band Methods Dragging	290 290 291
	Windows and Icons	273		Painting and Drawing	291

				Contents	
8-6	Virtual-Reality Environments	292	10-4	Superquadrics	312
	Summary	293		Superellipse	312
	References	294		Superellipsoid	313
	Exercises	294	10-5	Blobby Objects	314
			10-6	Spline Representations	315
				Interpolation and Approximation	016
$\mathbf{\Omega}$	Three-Dimensional			Splines	316
Y	Concepts	296		Parametric Continuity Conditions	317
_	Concepts	270		Geometric Continuity	317
9-1	Three-Dimensional Display Methods	297		Conditions	318
	Parallel Projection	298		Spline Specifications	319
	Perspective Projection	299	10-7	Cubic Spline Interpolation	
	Depth Cueing	299		Methods	320
	Visible Line and Surface			Natural Cubic Splines	321
	Identification	300		Hermite Interpolation	322
	Surface Rendering	300		Cardinal Splines	323
	Exploded and Cutaway Views	300		Kochanek-Bartels Splines	325
	Three-Dimensional and Stereoscopic Views		10-8	Bézier Curves and Surfaces	327
		300		Bézier Curves	327
9-2	Three-Dimensional Graphics Packages	302		Properties of Bézier Curves	329
	i ackages	302		Design Techniques Using Bézier	220
				Curves Cubic Bézier Curves	330 331
	Thurs Dimensional			Bézier Surfaces	333
	Three-Dimensional		10-9		
11	∩ Object		10-9	B-Spline Curves and Surfaces B-Spline Curves	334 335
L	V Representations	304		Uniform, Periodic B-Splines	336
	•			Cubic, Periodic B-Splines	339
10-1	Polygon Surfaces	305		Open, Uniform B-Splines	341
	Polygon Tables	306		Nonuniform B-Splines	344
	Plane Equations	307		B-Spline Surfaces	344
	Polygon Meshes	309	10-10	Beta-Splines	345
10-2	Curved Lines and Surfaces	310		Beta-Spline Continuity	
10-3	Quadric Surfaces	310		Conditions	345
	Sphere	311		Cubic, Periodic Beta-Spline	
	Ellipsoid	311		Matrix Representation	346

311 10-11

Rational Splines

Torus

347

10-12	Conversion Between Spline Representations	349		Visual Representations for Multivariate Data Fields	402
10-13	Displaying Spline Curves			Summary	404
	and Surfaces	351		References	404
	Horner's Rule	351		Exercises	404
	Forward-Difference Calculations Subdivision Methods	351 353			
10-14	Sweep Representations	355		Three-Dimensional	
10-15	Constructive Solid-Geometry	333		Geometric and Mode	lina
10 13	Methods	356			-
10-16	Octrees	359		Transformations	407
10-17	BSP Trees	362	11-1	Translation	408
10-18	Fractal-Geometry Methods	362	11-2	Rotation	409
	Fractal-Generation Procedures	363		Coordinate-Axes Rotations	409
	Classification of Fractals	364		General Three-Dimensional	
	Fractal Dimension	364		Rotations	413
	Geometric Construction of Deterministic Self-Similar Fractals			Rotations with Quaternions	419
		367	11-3	Scaling	420
	Geometric Construction	50	11-4	Other Transformations	422
	of Statistically Self-Similar			Reflections	422
	Fractals	369		Shears	423
	Affine Fractal-Construction		11-5	Composite Transformations	423
	Methods	372	11-6	Three-Dimensional Transformation	
	Random Midpoint-Displacement	272		Functions	425
	Methods	373 376	11-7	Modeling and Coordinate Transformations	426
	Controlling Terrain Topography Self-Squaring Fractals	378		_	426
	Self-Inverse Fractals	385		Summary References	429 429
10-19	Shape Grammars and Other	505		Exercises	
10-13	Procedural Methods	387		exercises	430
10-20	Particle Systems	390		~! ~	
10-21	Physically Based Modeling	393	17	Three-Dimensional	
10-22	Visualization of Data Sets	395	14	Viewing	431
	Visual Representations				
	for Scalar Fields	395	12-1	Viewing Pipeline	432
	Visual Representations for Vector Fields	400	12-2	Viewing Coordinates	433
	Visual Representations	400		Specifying the View Plane Transformation from World	433
	for Tensor Fields	401		to Viewing Coordinates	437
	·			-5	

				Contents	
12-3	Projections Parallel Projections Perspective Projections	438 439 443	13-12 13-13	Wireframe Methods Visibility-Detection Functions Summary	490 490 491
12-4	View Volumes and General Projection Transformations General Parallel-Projection Transformations	44 <i>7</i> 452		References Exercises	492 492
12-5	General Perspective-Projection Transformations Clipping Normalized View Volumes	454 456 458 460	14	Illumination Models and Surface-Renderin Methods	g 494
	Viewport Clipping Clipping in Homogeneous Coordinates	461	14-1 14-2	Light Sources Basic Illumination Models	496 497
12-6 12-7	Hardware Implementations Three-Dimensional Viewing Functions	463 464	· -	Ambient Light Diffuse Reflection Specular Reflection	497 497
	Summary References	467 468		and the Phong Model Combined Diffuse and Specular Reflections with Multiple Light	500
	Exercises	468		Sources Warn Model	504 504
12	Visible-Surface Detec			Intensity Attenuation	505
13-1	Methods Classification of Visible-Surface	469		Color Considerations Transparency Shadows	507 508 511
13-2	Detection Algorithms Back-Face Detection	470 471	14-3	Displaying Light Intensities Assigning Intensity Levels	511 512
13-3	Depth-Buffer Method	472		Gamma Correction and Video	
13-4	A-Buffer Method	475		Lookup Tables	51 3
13-5	Scan-Line Method	476		Displaying Continuous-Tone Images	515
13-6 13-7	Depth-Sorting Method BSP-Tree Method	478 481	14-4	Halftone Patterns and Dithering	
13-7	Area-Subdivision Method	482		Techniques Halftone Approximations	516 516
13-9	Octree Methods	485		Dithering Techniques	519
13-10	Ray-Casting Method	487	14-5	Polygon-Rendering Methods	522

488

488

489

Constant-Intensity Shading

Gouraud Shading

Phong Shading

522

523

525

xiii

比为试读,需要完整PDF请访问: www.ertongbook.com

13-11

Curved Surfaces

Surface Contour Plots

Curved-Surface Representations