PROGRAMMING
LANGUAGES

a8 N D

I MPLEMENTATION

L
#

BEFRIHES |
o wit5IxEl |
R % 3 e

ST . nh 18
TERRENCE W PRATT RS —isisses
.'\d\\- \l-i. e \11 W * \
ek L= CE ‘-hﬁj 2
: J,_\':_'l“ = = _.‘.“. :&L o
?::LW T 0 PR _‘.‘.‘n\if L.
Tt

-

PROGRAMMING LANGUAGES
Design and Implementation
THIRD EDITION

ERF#iE

mwﬂf%&ﬂ
3

Terrence W. Pratt

Center of Excellence in Space Data and Information Sciences
NASA Goddard Space Flight Center, Greenbelt, MD

Marvin V. Zelkowitz

Department of Computer Science and

Institute for Advan,cewmmﬂm“

University of Maryf@/"éollege% MD

AW

Prentice-Hall International, Inc.

Y/ A
S 194 0L
() HIBF 1585 .

Programming languages: design and implementation 3rd ed./ Terrence W. Pratt
and Marvin V. Zelkowitz.

© 1996, 1984, 1975 by Prentice Hall, Inc.
Original edition published by Prentice Hall, Inc., a Simon & Schuster Compa-

ny.
Prentice Hall A Al BAUE A F A EPTEBERN(REEFEFHBENT
X BRI XM EE X)) MR REITAFGRE A,
FPEARES2AR, REHEELTERE, FTERET/IXADR TTRH
BHED,

A BH TS Prentice Hall BAPhinE, THEERSHE,

LA RAUR FEN G FFICS: 01-98-0263

BRI B (CIP) ¥ #E

BFERINES . BT 5EH P 3 W30/ F R (Pratt, T.W.), E/RHA
Y (Zelkowitz, M. V.). — BEIRR . — JL A0 A K% K3, 1998.5

(KRETENHEEFNS)

ISBN 7-302-02833-8

L. % 1.O%- O [BEEDNEX N.TPI2
A A B 1 CIP BB (98) % 01690 &
B W42 A (ALSEI A B, W4 100084)
R 5 0 B ik www . tup. tsmghua edu ¢n

ENRIE . AR RFEIR])
BiTE . FEHIEBIE AR ATH

FF &:850x1168 1/32 EP%: 21.125

R R 1998F S AF1AR 1998 4£5 A4 1 IKEIRI
5. ISBN 7-302-02833-8/TP- 1490

EN #%: 0001~5000

E itz 32.00 5C

t AR H

anf

EAWKRFE HRAELVE, e —AER LG R
B TR R BN B R BRI LT SAEZMILS S
IEBRYE S RIS WE S R NE % & & EER S WL, 1E
ARECTAR R, ATA NN A 5 E AN 7T 0 LA T W
REJ), R BEA R, (T2 01 R & AR R 0 2 B SR SO BHIREE B
WREST . FHE T, TEE KB E A 1 R¥EEEH KR
B —FHE T W ENAE D BIRRETFR, R, £ RA LM
ETRXITIRBHFRMEFER, FEERERIFR 2R iE" §
ZHh, AR R IR AT B RIR . (HB B ETIRE
—EMENEFEWEFREMIEANRFESF R, AiBEXHIE
MIFe e, NPRIE T 7 A EVLE 2 7 R AR A 5 A, #1978
EUEH R . EHERZEN AT 6 A2 B R H M RAE R,] 1]
RZE5, SR ERR S H ., AEEERES T RAOLE.
Prentice Hall 23]l A K 2% tH B 413X 1R & 16 45 [H B 5853 K F 19
Y SIANRE S SR, AR AENRETHER S, HESNER
BOM R P A R A R

ERPNE) T

Prentice Hall 2 H]

1997.11

Preface

This third edition of Programming Languages: Design and Implementation con-
tinues the tradition developed in the first two editions to describe programming
language design by means of the underlying software and hardware architecture
that is required for execution of programs written in those languages. This pro-
vides the programmer with the ability to develop software that is both correct and
efficient in execution. In this new edition, we continue this approach, as well as
improve upon the presentation of the underlying theory and formal models that
form the basis for the decisions made in creating those languages.

Programming language design is still a very active pursuit in the computer
science community as languages are “born,” “age,” and eventually “die.” This third
edition represents the vital languages of the mid-1990s. Chapters on COBOL, PL/I,
SNOBOL4, and APL have been dropped. Discussions on C, C++, ML, Prolog, and
Smalltalk have been added to reflect the evolution of programming language design
and the emergence of new paradigms within the community. Pascal is starting to
age, and Ada and FORTRAN have been renewed with new standards, Ada 95 and
FORTRAN 90, respectively. It is interesting to speculate as to whether any of these
languages will be in future editions of books such as this one. For both of us, the
deletion of SNOBOL4 was a considerable loss. It is one of the most interesting and
powerful languages ever developed, although it still lives on as ““shareware” in PCs.

At the University of Maryland, a course has been taught for the past 20 years
that conforms to the structure of this book. For our junior-level course, we assume
the student already knows Pascal and C from earlier courses. We then emphasize
ML, Prolog, C++, and LISP, as well as include further discussions of the implemen-
tation aspects of C and Pascal. The study of C++ furthers the students’ knowl-
edge of procedural languages with the addition of object oriented classes, and the
inclusion of LISP, Prolog, and ML provide for discussions of different programming
paradigms. Replacement of one or two of these by FORTRAN, Ada, or Smalltalk
would also be appropriate.

It is assumed that the reader is familiar with at least one procedural language,
generally C, FORTRAN, or Pascal. For those institutions using this book at a lower
level, or for others wishing to review prerequisite material to provide a framework for

o

vi Preface

discussing programming language design issues, Chapters 1 and 2 provide a review
of material needed to understand later chapters. Chapter 1 is a general introduction
to programming languages, while Chapter 2 is a brief overview of requirements for
programming languages.

The theme of this book is language design and implementation issues. ' Part [
forms the core of an undergraduate course in programming languages. Chapters 3
through 8 are the basis for this course by describing the underlying grammatical
model for programming languages and their compilers (Chapter 3), elementary data
types (Chapter 4), encapsulation (Chapter 5), statements (Chapter 6), procedure
invocation (Chapter 7), and inheritance (Chapter 8), which are the central con-
cerns in language design. Examples of these features are described in a variety of
languages and typical implementation strategies are discussed.

The topics in this book cover the 12 knowledge units recommended by the 1991
ACM/IEEE Computer Society Joint Curriculum Task Force for the programming
languages subject area [TUCKER et al. 1991). For institutions using this book
at a higher level or those wishing to address more advanced topics, Chapter 9
continues the discussion of parsing that is first introduced in Chapter 3 and brings
in the concept of programming language semantics with discussions of program
verification, denotational semantics, and the lambda calculus with an introduction
to undecidability and NP completeness. This provides the reader with an overview
of more advanced courses in the programming language, software engineering, and
computational theory areas of computer science. For this material, prior experience
with the predicate calculus and mathematical logic would help. In addition, Chapter
9 addresses current issues in parallel programming, provides an introduction to
current research in hardware and software, and suggests what are likely to be the
programming language design issues in the future.

While compiler writing was at one time a central course in the computer science
curriculum, there is increasing belief that not every computer science student needs
to be able to develop a compiler; such technology should be left to the compiler
specialist, and the “hole” in the schedule produced by deleting such a course might
be better utilized with courses such as software engineering, database engineering, or
other practical use of computer science technology. However, we believe that aspects
of compiler design should be part of the background for all good programmers.
Therefore, a focus of this book is how various language structures are compiled,
and Chapter 3 provides a fairly complete summary of parsing issues.

The nine chapters of Part I emphasize programming language examples in FOR-
TRAN, Ada, C, Pascal, ML, LISP, Prolog, C++, and Smalltalk. Additional exam-
ples are given in PL/I, SNOBOL4, APL, BASIC, and COBOL, as the need arises.
The sections of Part II, however, are organized around individual languages. Each
section describes a different language and shows how that language provides the
features described in the first nine chapters of Part I. The goal is to present each
language as a consistent implementation of the software architecture given in the
first half of the book. While certainly not a reference manual for each language,
" each section should provide enough information for the student to solve interesting

Preface vil

class problems in each of those languages without the need to purchase separate
language reference manuals. (However, having a few of those around for your local
implementation is certainly a big help.)

While discussing all of the languages briefly during the semester is appropriate,
we do not suggest that the programming parts of this course consist of problems
in each of these languages. We think that would be too superficial in one course.
Nine programs in nine different languages would be quite a chore and provide the
student with little in-depth knowledge of any of these languages. We assume that
each instructor will choose three or four of the Part II languages and emphasize
those.

All examples in this book, except for the most trivial, were tested on an appro-
priate translator; however, as we clearly point out in Section 1.3.3, correct execution
on our local system is no guarantee that the translator is processing programs ac-
cording to the language standard. We are sure that Mr. Murphy is at work here,
and some of the “trivial” examples may have errors. If so, we apologize for any
problems that may cause.

To summarize, our goal in producing this third edition was to:

¢ Provide an overview of the key paradigms used in developing modern pro-
gramming languages;

¢ Highlight several languages, which provide those features, in sufficient detail
to permit programs to be written in each language demonstrating those features;

¢ Explore the implementation of each language in sufficient detail to provide
the programmer an understanding of the relationship between a source program
and its execution behavior;

¢ Provide sufficient formal theory to show where programming language design
fits within the general computer science research agenda; and

¢ Provide a sufficient set of problems and alternative references to allow stu-
dents the opportunity to extend their knowledge of this important topic.

We gratefully acknowledge the valuable comments received from Henry Bauer,
Hikyoo Koh, John Mauney, and Andrew Oldroyd on earlier drafts of this manuscript
and from the 118 students of CMSC 330 at the University of Maryland during the
Spring, 1995 semester who provided valuable feedback on improving the presenta-
tion contained in this book.

Perhaps 70% of the text has been rewritten between edition 2 and edition 3. We
believe the new edition is a considerable improvement over the previous version of
this book. We hope that you agree.

Terry Pratt
Greenbelt, Maryland

Marv Zelkowitz
College Park, Maryland

Contents

Part 1. Concepts

1 The Study of Programming Languages

1.1

Why Study Programming Languages?

1.2 A Short History of Programming Languages

1.3

14

1.5
1.6

1.2.1 Development of Early Languages
1.2.2 Role of Programming Languages
What Makes a Good Language?

1.3.1 Attributes of a Good Language
1.3.2 Application Domains

1.3.3 TI.anguage Standardization
Effects of Environments on Languages
1.41 Batch-Processing Environments
1.4.2 Interactive Environments

1.4.3 Embedded System Environments
1.44 Programming Environments
1.4.5 Environment Frameworks
Suggestions for Further Reading
Problems

2 Language Design Issues

2.1

The Structure and Operation of a Computer

2.1.1 The Hardware of the Computer

2.1.2 Firmware Computers

2.1.3 Translators and Software-Simulated Computers

(o

© ot 0N

12
16
19
23
23
24
25
26
30
30
31

33
33
35
39
41

Contents

2.2

2.3
2.4
2.5

Virtual Computers and Binding Times

2.2.1 Syntax and Semantics

2.2.2 Virtual Computers and Language Implementations
2.2.3 Hierarchies of Computers

2.2.4 Binding and Binding Time

Language Paradigms

Suggestions for Further Reading

Problems

Language Translation Issues

3.1

3.2

3.3

3.4
3.5

Programming Language Syntax

3.1.1 General Syntactic Criteria

3.1.2 Syntactic Elements of a Language
3.1.3 Overall Program-Subprogram Structure
Stages in Translation

3.2.1 Analysis of the Source Program
3.2.2 Synthesis of the Object Program
Formal Translation Models ..

3.3.1 BNF Grammars

3.3.2 Finite-State Automata

3.3.3 Pushdown Automata

3.3.4 Efficient Parsing Algorithms

3.3.5 Semantic Modeling

Suggestions for Further Reading
Problems

Data Types

4.1

4.2

Properties of Types and Objects

4.1.1 Data Objects, Variables, and Constants
4.1.2 Data Types

4.1.3 Specification of Elementary Data Types
4.1.4 Implementation of Elementary Data Types
4.1.5 Declarations

4.1.6 Type Checking and Type Conversion
4.1.7 Assignment and Initialization
Elementary Data Types

4.2.1 Numeric Data Types

4.2.2 Enumerations

45
46
47
48
50
55
59
59

61
61
62
66
69
72
74
77
79
80
89
93
95
98
102
103

107
107
107
112
113
117
119
121
127
130
130
137

CONTENTS X1
4.2.3 Booleans 139
4.2.4 Characters 140
4.2.5 Internationalization 141

4.3 Structured Data Types 142
4.3.1 Structured Data Objects and Data Types 142
4.3.2 Specification of Data Structure Types 143
4.3.3 Implementation of Data Structure Types 145
4.3.4 Declarations and Type Checking for Data Structures 149
4.3.5 Vectors and Arrays 151
4.3.6 Records 160
4.3.7 Lists 167
4.3.8 Character Strings 172
4.3.9 Pointers and Programmer-Constructed Data Objects 175
4.3.10 Sets 178
4.3.11 Executable Data Objects 181
4.3.12 Files and Input-Output 181

4.4 Suggestions for Further Reading 187

4.5 Problems 187

5 Abstraction I: Encapsulation 195

5.1 Abstract Data Types 196
5.1.1 Evolution of the Data Type Concept 197
5.1.2 Information Hiding 198

5.2 Encapsulation by Subprograms 200
5.2.1 Subprograms as Abstract Operations 200
5.2.2 Subprogram Definition and Invocation 203
5.2.3 Subprogram Definitions as Data Objects 208

5.3 Type Definitions 209
5.3.1 Type Equivalence 211
5.3.2 Type Definitions with Parameters 215

5.4 Storage Management 216
5.4.1 Major Run-Time Elements Requiring Storage 217
5.4.2 Programmer- and System-Controlled Storage Management 219
5.4.3 Static Storage Management 220
5.44 Stack-Based Storage Management 221
5.4.5 Heap Storage Management: Fixed-Size Elements 223
5.4.6 Heap Storage Management: Variable-Size Elements 231

Contents

5.5 Suggestions for Further Reading
5.6 Problems

Sequence Control

6.1 Implicit and Explicit Sequence Control

6.2 Sequencing with Arithmetic Expressions
6.2.1 Tree-Structure Representation
6.2.2 Execution-Time Representation

6.3 Sequencing‘with Nonarithmetic Expressions
6.3.1 Pattern Matching
6.3.2 Unification
6.3.3 Backtracking

6.4 Sequence Control Between Statements
6.4.1 Basic Statements
6.4.2 Structured Sequence Control
6.4.3 Prime Programs

6.5 Suggestions for Further Reading

6.6 Problems

Subprogram Control
7.1 Subprogram Sequence Control
7.1.1 Simple Call-Return Subprograms
7.1.2 Recursive Subprograms
7.2 Attributes of Data Control
7.2.1 Names and Referencing Environments
7.2.2 Static and Dynamic Scope
7.2.3 Block Structure
7.2.4 Local Data and Local Referencing Environments
7.3 Shared Data in Subprograms
7.3.1 Parameters and Parameter Transmission
7.3.2 Explicit Common Environments
7.3.3 Dynamic Scope
7.3.4 Static Scope and Block Structure .
7.4 Suggestions for Further Reading
7.5 Problems

Abstraction II: Inheritance
8.1 Abstract Data Types Revisited

234
234

238
238
239
240
248
253
253
257
263
264
264
270
279
284
284

286
286
288
292
294
295
300
303
305
311
312
330
333
337
344
345

350
351

CONTENTS

8.2

8.3
8.4
8.5

Inheritance

8.2.1 Derived Classes-

8.2.2 Methods

8.2.3 Abstract Classes

8.2.4 Objects and Messages
8.2.5 Abstraction Concepts
Polymorphism

Suggestions for Further Reading
Problems

9 Advances in Language Design

9.1

9.2

9.3

94

9.5

9.6

Variations on Subprogram Control

9.1.1 Exceptions and Exception Handlers
9.1.2 Coroutines

9.1.3 Scheduled Subprograms

9.1.4 Nonsequential Execution

Parallel Programming

9.2.1 Concurrent Execution

9.2.2 Guarded Commands

9.2.3 Tasks

9.2.4 Synchronization of Tasks

Formal Properties of Languages

9.3.1 Chomsky Hierarchy

9.3.2 Undecidability

9.3.3 Algorithm Complexity

Language Semantics

9.4.1 Denotational Semantics

9.4.2 Program Verification

9.4.3 Algebraic Data Types

9.4.4 Resolution

Hardware Developments

9.5.1 Processor Design

9.5.2 System Design

Software Architecture

9.6.1 Persistent Data and Transaction Systems
9.6.2 Networks and Client/Server Computing
9.6.3 Desktop Publishing

358
359
362
364
366
370
372
373
374

375
377
377
382
383
385
385
387
388
391
393
404
405
408
413
416
416
423
428
431
433
433
436
438
438
440
441

xiv

Contents

9.6.4

Programming Language Trends

9.7 Suggestions for Further Reading
9.8 Problems

Part II. Paradigms and Languages

10 Simple Procedural Languages
10.1 FORTRAN

10.1.1
10.1.2
10.1.3
10.1.4
10.1.5
10.1.6
10.1.7
10.1.8
102 C
10.2.1
10.2.2
10.2.3
10.2.4
10.2.5
10.2.6
10.2.7
10.2.8

History

Hello World

Brief Overview of the Language

Data Objects

Sequence Control

Subprograms and Storage Management
Abstraction and Encapsulation
Language Evaluation

History

Hello World

Brief Overview of the Language

Data Objects

Sequence Control

Subprograms and Storage Management
Abstraction and Encapsulation
Language Evaluation

10.3 Suggestions for Further Reading
104 Problems

11 Block-Structured Procedural Languages

11.1 Pascal

11.1.1
11.1.2
11.1.3
11.1.4
11.1.5
11.1.6
11.1.7
11.1.8

History

Hello World

Brief Overview of the Language

Data Objects

Sequence Control

Subprograms and Storage Management
Abstraction and Encapsulation
Language Evaluation

444
444
445

449

451
451
452
452
453
457
462
468
470
471
471
472
472
472
477
482
485
489
489
490
490

492
492
493
494
494
498
505
509
516
516

CONTENTS

Xv

11.2 Suggestions for Further Reading
11.3 Problems

12 Object-Based Languages

12.1

12.2

12.3

Ada
1211
12.1.2
12.1.3
12.14
12.1.5
12.1.6
12.1.7
12.1.8
C++
12.2.1
12.2.2
12.2.3
12.24
12.2.5
12.2.6
12.2.7
12.2.8

History

Hello World

Brief Overview of the Language

Data Objects

Sequence Control

Subprograms and Storage Management
Abstraction and Encapsulation
Language Evaluation

History

Hello World

Brief Overview of the Language

Data Objects

Sequence Control

Subprograms and Storage Management
Abstraction and Encapsulation
Language Evaluation

Smalitalk

12.3.1
12.3.2
12.3.3
12.34
12.3.5
12.3.6
12.3.7
12.3.8

History

Hello World

Brief Overview of the Language

Data Objects

Sequence Control

Subprograms and Storage Management
Abstraction and Encapsulation
Language Evaluation

12.4 Suggestions for Further Reading
12.5 Problems

13 Functional Languages

13.1

LISP

13.1.1 History

13.1.2

Hello World

518
518

520
520
520
522
522
527
536
540
547
549
550
550
551
551
556
561
562
564
564
565
565
566
566
570
572
574
577
577
578
579

581
581
582
582

xvi Contents

13.1.3 Brief Overview of the Language 583

13.1.4 Data Objects 587
13.1.5 Sequence Control 589
13.1.6 Subprograms and Storage Management 593
13.1.7 Abstraction and Encapsulation 599
13.1.8 Language Evaluation . 599

13.2 ML 600
13.2.1 History 600
13.2.2 Hello World 600
13.2.3 Brief Overview of the Language 601
13.2.4 Data Objects 603
13.2.5 Sequence Control 607
13.2.6 Subprograms and Storage Management 611
13.2.7 Abstraction and Encapsulation 613
13.2.8 Language Evaluation 616

13.3 Suggestions for Further Reading 616
13.4 Problems 617
14 Logic Programming Languages 620
14.1 Prolog 620
14.1.1 History 621
14.1.2 Hello World 621
14.1.3 Brief Overview of the Language 622
14.1.4 Data Objects 625
14.1.5 Sequence Control 626
14.1.6 Subprograms and Storage Management 628
14.1.7 Abstraction and Encapsulation 629
14.1.8 Language Evaluation 630

14.2 Suggestions for Further Reading 630
14.3 Problems 630
References 632

Index 641

MK+
Prentice Hall AT]

SERETRALEBER

1997 £ 1 A—1998 £ 7 A

. Computer Networks 3rd ed. 1996/Andrew S. Tanenbaum(it ¥ AL A% #
35 832 W)

. Distributed Operating Systems 1995/Andrew $. Tanenbaum(% # X # 1%
A% 628 1)

. The C Programming Language 2nd ed. 1988/Brian W. Kernighan, Dennis
M. Ritchie(C £ A% it#8F # 2 ¥k 284 71)

. The C Answer Book: Solutions to the Exercises in The C programming
Languange, second edition by Brian W.Kernighan & Dennis M. Ritchie 2nd
ed. 1989/Clovis L. Tondo, Scott E.Gimpel(C # A H#E T £ 2 M I ¥R
% £ 28216 1)

. Multimedia: Computing, Comsunications & Applications 1995/Ralf Stein-
metz, Klara Nahrstedt($ 4% # K. it 0, @2 E R 876)

. Data Stracture with C + + 1996/William Ford, William Topp (% 1% ¢ #
C+ + &3 H#3& 916)

. Cbmputer Organization And Architecture ; Designing for Performance 4 th
ed. 1996/ William Stallings(it L #Lsn 4 b 545 M £33 £ 4 9% 696 77)
. Use Case Maps for Object-Oriented Systems 1996/R.). A.Buhr, R. S. Cas-
selman(A TE &£ 2G5 F RS2 ARHE 326 71)

. Operating Systems : Design and Implementation 2nd ed. 1997/ Andrew S.
Tanenbaum, Albert S. Woodhull(#5 2% .8+ 55 M £ 2 4% 960 T M
X&) '

10. Data And Computer Communications 5th ed. 1997/ William Stallings(# 4%
B EAEE F S M 820 7))

11. Digital Logic Circuit Analysis & Design 1995/ Victor P. Nelson, H. Troy

Nagle, Bill D. Carroll, J. David Irwin(# F 1% % & 38 54 5 % it 868)

12.

13.

14.

15.

16.

17.

18.

19.

20

21.

22.

Discrete Mathematical Structures 3rd ed. 1996/Bernard Kolman, Robert
C.Busby, Sharon Ross{ & # & ¥ 44 £ 3 8% 544 71)

Computer graphics C Version 2nd ed. 1997/Donald Hearn, M. Pauline
Baker(it # #LE M ¥ CIET £ 204 864 T M#4)

Computer Networks and Internets 1997/Douglas E. Comer(it ¥ 4L R 4% 5
B4M 530 71 MALE)

A First Course in Database Systems 1997/)effrey D. Ullman, Jennifer
Widom(#k 48 & 4% % K sk A2 484 1)

Digital Image Processing 1996/Kenneth R. Castleman(% F & £ 4 32 686
)

Business Data Communications 3rd ed. 1998/William Stallings, Richard
Van Slyke(¥ # #4815 % 3 4L 578 1)

Software Architecture ; Perspectives on an Emerging Discipline 1996/
Mary Shaw, David Garlan(3:# % % 449 264 T)

Digital Video Processing 1995/A. Murat Tekalp(# 5L %14k 52 548 7)
IBM PC Assembly Language and Programming 4th ed. 1998/PETER ABEL
(IBM PC iC % &% 542 At it % 4 ¥ 622) '

Operating Systems : Internals and Design Principles 3rd ed. 1998/
William Stallings(# 1 % 4% .84 5%t R 2 § 3 & 800)
Programming Languages : Design and Implementation 3rd ed. 1996/ Ter-
rence W.Pratt, Marvin V. Zelkowitz(#Z A8 &3 . %t 550 % 3%
570)

