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PREFACE I

PREFACE

Fuzzy set theory has lately become a subject of considerable attention.
The growing visibility of the theory is a result of its highly successful
practical applications, developed primarily in Japan since the late1980s.
Among these applications, fuzzy controllers have been by far the most
visible, particularly in connection with consumer products, and have
overshadowed the role of fuzzy set theory in many other areas. This is
somewhat unfortunate. In spite of their considerable success, fuzzy
controllers represent, after all, only a very narrow application area of
fuzzy set theory. Most applications of the theory, some of them quite
profound, are in other areas. Included are areas such as decision making,
clustering and pattern recognition, processing and understanding of
images, diagnosis (medical, engineering, cognitive), risk analysis and
reliability theory, engineering design, database and information retrieval
systems, expert systems, business and management, economic theory,
processing of natural language, and numerous other application areas.

Although known applications of fuzzy set theory in the mentioned
areas are already quite impressive, the significance of the theory
transcends these or any other specific applications. By opening a radically
new way of thinking, thinking in terms of degrees of membership and
truth rather than absolute membership and truth, fuzzy sets and fuzzy
logic will eventually affect virtually all aspects of human affairs. This new
way of thinking is substantially more attuned to our interaction with the
real world than the traditional thinking restricted to sets with sharp
boundaries and logic that recognizes only absolute truths and falsities. As
Bernard Russell once concluded, classical logic "is not applicable to this
terrestrial life, but only to an imagined celestial existence." In science, this
change of thinking amounts to a major paradigm shift, too radical at first
sight, which can only be initiated by someone who has tremendous
courage, in addition to the requisite insight.

It was Lofti Zadeh, a Professor at the University of California at
Berkeley, who had the insight as well as the courage to initiate in 1965
this radically new paradigm by introducing the concept of a fuzzy set, a
set in which the membership is a matter of degree rather than a matter of
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either affirmation or denial. The reaction to this proposal was fairly
typical of a paradigm shift. A few scholars greeted it with enthusiasm, but
many expressed skepticism, and some were even openly hostile towards it.
Nevertheless, the new idea persevered, matured significantly over the
years by the work of growing number of its supporters, and began
eventually to demonstrate its very impressive pragmatic utility.

At this time, fuzzy set theory is still quite young and rapidly
developing. However, the established body of knowledge regarding the
theory and its many applications is already quite large. Unless one has
taken an active part in the development of this knowledge, it is rather
difficult to comprehend it without any guidance. To provide such a
guidance is the primarily purpose of this book.

As indicated by its subtitle, the book consists of three parts: L
Fundamentals; II. Applications; and III. Personal Views. Part I is a simple
introduction to the most fundamental ideas pertaining to fuzzy set theory,
fuzzy logic, and fuzzy systems. Omitted are many details, secondary
concepts, methods, and special mathematical topics, which are not
considered essential for comprehending the overall nature of this
emerging field. Yet, the coverage is fairly comprehensive as far as the
basic ideas are concerned. The presentation is rigorous, but informal. Part
II is an overview of established applications of fuzzy set theory and fuzzy
logic.

Together, Parts I and II are intended to provide the reader with a quick
and easy introduction to fuzzy set theory and its applications. For further
study of various special topics, the reader is guided through relevant
literature via Bibliographical Comments and Bibliographical Index. For a
comprehensive deeper study of the field, the graduate text Fuzzy Set and
Fuzzy Logic: Theory and Applications (Prentice Hall, 1995), coauthored
by G.J.Klir and B.Yuan, offers the most natural continuation of this small
introductory book. The primarily advantage is that both books use the
same terminology and notation.

Part I is very different from Parts I and II. It consists of seven
chapters, six of which (Chapter 14-19) are self-contained papers with their
own references. These are my previously published papers, which are
appropriately adapted for their use in this book. The only chapter in Part
111 that is not based on previously published papers is Chapter 13.
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The purpose of Part II is twofold: (i) to express my personal views on
some issues regarding fuzzy set theory and fuzzy logic; and (ii) to provide
the reader with additional information regarding some historical and other
aspects of fuzzy set theory, which are important for a deeper
understanding of the theory, but are too specific or too technical to be
covered in Parts I and I1.

July 1999 - George J. Klir
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PART I: FUNDAMENTALS

CHAPTER 1. CLASSICAL SETS VERSUS FUZZY
SETS

1.1. Introduction

The classical concept of a set is fundamental to virtually all branches of
classical mathematics, pure as well as applied. Intuitively, a set is any
collection of definite and distinct objects that are conceived as a whole.
Objects that are included in a set are called its members. Sets whose
members are themselves sets are usually referred to as families of sets.

Classical sets must satisfy two basic requirements. First, members of
each set must be distinguishable from one another; and second, for any
given set and any given object, it must be possible to determine whether
the object is, or is not, a member of the set.

Fuzzy sets differ from classical sets by rejecting the second
requirement. Contrary to classical sets, fuzzy sets are not required to have
sharp boundaries that distinguish their members from other objects. The
membership in a fuzzy set is not a matter of affirmation or denial, as it is
in a classical set, but a matter of degree.

Due to their sharp boundaries, classical sets are usually referred to in
fuzzy set literature as crisp sets. This convenient and well-established
term is adopted in this book. Also adopted is the usuwal notation,
according to which both crisp and fuzzy sets are denoted by capital letters,
while objects by which sets are formed are denoted by lower case letters.
Moreover, the standard symbol x € A is employed to describe that a given
object x is a member of crisp set A, while x ¢ A describes that x is not a
member of A. When a crisp set A consists of members aj, a, --, @, We
write

A= {al’ Az, *t an};
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when A consists of members that satisfy property P, we write
A={a | P@},

where the symbol I denotes the phrase ; such that; -and P(a;) designates
a proposition ; a; has the property P.; -

Given two crisp sets, A and B, if every member of A is also a member
of B, then A is called a subset of B and we write A ¢ B. The empry set, &,
which does not contain any objects, is, by definition, a subset of any set,
including itself.

In each particular application of set theory, all the sets of concern are
subsets of a fixed set, which consists of all objects relevant to the
application. This set is called a universal set, and it is always denoted in
this book by X. The set of all subsets of X, which is called the power set
of X, is denoted by Z(X).

A common way of defining an arbitrary crisp subset A of a given
universal set X is to assign the number 1 to each member of X that is also
a member of A, and to assign the number 0 to the remaining members of
X. The reader may recall that this assignment is called in classical set
theory a characteristic function of A. It is important to realize that the
numbers 1 and 0 are employed here only as convenient symbols and have
no numerical significance.

The concept of a universal set, which emerges from the context of
each application of set theory, is as fundamental for fuzzy sets as it is for
crisp sets. Moreover, universal sets are always assumed to be crisp,
regardless of whether we deal with their crisp or fuzzy subsets. Each
fuzzy set is defined in terms of a relevant crisp universal set by a function
analogous to the characteristic function of crisp sets. This function is
called a membership function. To define a fuzzy set A on a given
universal set X, the membership function assigns to each member x of X a
real number in the unit interval [0,1]. This number is viewed as the degree
of membership of X in A.

Contrary to the symbolic role of numbers 1 and 0 in characteristic
functions of crisp sets, numbers assigned to objects by membership
functions of fuzzy sets have clearly a numerical significance. This



