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Lesson 1

Mechanics of Material

S_tr&ss and Axial Loads

1. Introduction

In all engineering construction the component parts of a structure must be assigned definite physi-
cal sizes.Such parts must be properly proportioned to resist the actual or probable forces that may be
imposed upon them. Thus, the walls of a pressure vessel must be of adequate strength to withstand the
intemnal pressure : the floors of a building must be sufficiently strong for their intended purpose : the shaft
of a machine must be of adequate size to carry the required torque:a wing of an airplane must safely
withstand the aerodynamic loads which may come upon it in flight or landing. Likewise, the parts of a
composite structure must be rigid enough so as not to deflect or “sag” excessively when in operation
under the imposed loads. A floor of a building may be strong enough but yet may deflect excessively,
which in some instances may cause misalignment of manufacturing equipment, or in other cases result in
the cracking of a plaster ceiling attached undemeath. Also a member may be so thin or slender that, up-
on being subjected to compressive loading, it will collapse through buckling;i.e. , the initial configura-
tion of a member may become unstable. Ability to determine the maximum load that a slender colurmn
can carry before buckling occurs, or determination of the safe level of vacuum that can be maintained by
a vessel is of great practical importance.

In engineering pmbﬁce, such requirements must be met with minimum expenditure of a given ma-
terial . Aside from cost, at times—as in the design of satellites—the feasibility and success of the whole
mission may depend on the weight of a package. The subject of mechanics of materials , or the strength
of materials® . as it has been traditionally called in the past. involves analytical methods for determining
the Strength, stiffness ( deformation characteristics), and stability of the various load-carrying mem-
bers. Alternately, the subject may be termed the .mechanics of solid deformable bodies .

Mechanics of materials is a fairly old subject, generally dated from the work of Galileo in the early
part of the seventeenth century . Prior to his investigations into the behavior of solid bodies under loads,

constructors followed precedents and empirical rules. Galileo was the first to attempt to explain the be-
havior of some of the members under load on a rational basis. He studied members in tension ‘and com-
pression, and notably beams used in the construction of hulls of ships for the Italian navy. Of course
much progress has been made since that time, but it must be noted in passing that much is owed in the
development of this subject to the French investigators , among whom a group of outstanding men such as
Coulomb, Poisson, Navier, St. Venant, and Cauchy, who worked at the break of the nineteenth century,
has left an indelible impression on this subject.

The subject of mechanics of materials %s@) broadly across all branches of the engineering profes-
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sion with remarkably many applications. Its methods are needed by designers of offshore structures; by
civil engineers in the design of bridges and buildings; by mining engineers and architectural engineers,
each of whom is interested in structures; by nuclear engineers in the design of reactor components; by
mechanical and chemical engineers, who rely upon the methods of this subject for the design of
machinery and pressure vessels, by metallurgists, who need the fundamental concepts of this subject in
order to understand how to improve existing materials further; finally, by electrical engineers, who need
the methods of this subject because of the importance of the mechanical engineering phases of many
portions of electrica equipment. Mechanics of materials has characteristic methods all its own. It is a
definite discipline and one of the most fundamental subjects of an engineering curriculum, standing a-
longside such other basic subjects as fluid mechanics, thermodynamics, and basic electricity.

The behavior of a member subjected to forces depends not only on the fundamental laws of Newto-
nian mechanics that govern the equilibrium of the forces but also on the physical characteristics of the
materials of which the member is fabricated . The necessary information regarding the latter comes from
the laboratory where materials are subjected to the action of accurately known forces and the behavior of
test specimens is observed with particular regard to such phenomena as the occurrence of breaks, defor-
mations , etc. Determination of such phenomena is a vital part of the subject, but this branch of the sub-
ject is left to other books. Here the end results of such investigations are of interest,and this course is
concerned with the analytical or mathematical part of the subject in contradistinction to experimenta-
tion. For the above reasons, it is seen that mechanics of materials is a blended science of experiment
and Newtonian postulates of analytical mechanics . From the latter is borrowed the branch of the science
called statics ,a subject with which the reader of this book is presumed to be familiar, and on which the
subject of this book primarily depends.

This text will be limited to the simpler topics of the subject.In spite of the relative simplicity of
the methods emponed here, however, the resulting techniques are unusually useful as they do apply to a
vast number of technically important problems.

The subject matter can be mastered best by solving numerous problems . The number of formulas
necessary for the analysis and design of structural and machine members by the methods of mechanics
of materials is remarkably small; however, throughout this study the student must develop an ability to
visualize a problem and the nature of the quantities being computed Complete , carefully drawn dia-
grammatic sketches of problems to be solved will pay large dwtdends in a quicker and more complete
mastery of this subject .

2. Method of Sections

One of the main problems of 'mechanics of materials is the investigation of the internal resistance
of a body, that is, the nature of forces set up within a body to balance the effect of the externally applied
forces . For this purpose, a uniform method of approach is employed. A compleie diagrammatic sketch of
the member to be investigated is prepared, on which all of the external forces acting on a body are
shown at their respective points of application. Such a sketch is called a free-body diagram® . All forces

acting on a body, including the reactive forces caused by the supports and the weight of the body itself,
JE— 2 —_—



are considered external forces.Moreover, since a stable body at rest is in equilibrium, the forces acting
on it satisfy the equations of static equilibrium. Thus, if the forces acting on a body such as shown in
Fig.1.1(a) satisfy the equations of static equilibrium and are all shown acting on it, the sketch repre-
sents a freebody diagram. Next, since a determination of the internal forces caused by the external ones
is one of the principal concems of this subject, an arbitrary section is passed through the body, com-
pletely separating it into two parts. The result of such a process can be seen in Figs.1.1(b)and (c)
where an arbitrary plane ABCD separates the original solid body of Fig.1.1(a) into two distinct parts.
This process will be referred to as the method of sections . Then,if the body as a whole is in equilibri-
um, any part of it must also be in equilibium. For such parts of a body, however, some of the forces
necessary to maintain equilibrium must act at the cut section. These considerations lead to the following
fundamental conclusion: the externally applied forces to one side of an arbitrary cut must be balanced by
the internal forces developed at the cut, or briefly, the extemnal forces are balanced by the internal
forces . Later it will be seen that the cutting planes will be oriented in a particular direction to fit special
requirements . However, the above concept will be relied upon as a first step in solving all problems

where internal forces are being investigated.

P, P,

(b) *
D

sl 52 S3

(a) (b) (e)
Fig.1.1 Sectioning of a body

In discussing the method of sections, it is significant to note that some bodies, although not in
static equilibrium, may be in dynamic equilibrium. These problems can be reduced to problems of static
equilibrium . First, the acceleration of the part in question is computed, then it is multiplied by the mass
of the body, giving a force F = ma . If the force so computed is applied to the body at its mass center in
a direction opposite to the acceleration, the dynamic problem is reduced to one of statics. This is the so-
called d’ Alembert principle® . With this point of view,all bodies can be thought of as being instanta-
neously in a state of static equilibrium. Hence for any body, whether in static or dynamic equilibrium, a

free-body diagram can be prepared on which the necessary forces to maintain the body as a whole in
equilibrium can be shown.From then on the problem is the same as discussed above.

3. Stress

In general, the intemnal forces acting on inﬁnipesimal areas of a cut may be of varying magnitudes
and directions, as is shown diagrammatically in Figs.1.1(b) and (c) . These intemal forces are vectori-
J— 3 JR—



al in nature and maintain in equilibrium the extemally applied forces. In mechanics of materials it is
particularly significant to determine the intensity of these forces on the various portions of the cut, as
resistance to deformation and the capacity of materials to resist forces depend on these intensities. In
general , these intensities of force acting on infinitesimal areas of the cut vary from point to point, and,
in general , they are inclined with respect to the plane of the cut. In engineering practice it is customary
to resolve this intensity of force prependicular and parallel to the section investigated. Such resolution of
the intensity of a force on an infinitesimal area is shown in Fig.1.2. The intensity of the force perpen-’
dicular or normal to the section is called the normal stress at a point. In this book it will be designated
by the Greek letter ¢ (sigma) . As a particular stress generally holds true only at a point, it is defined

mathematically as

where F is a force acting normal to the cut, while A is the corresponding area. It is customary to refer
“to the normal stresses that cause traction or tension on the surface of a cut as sensile stresses.On the
other hand, those that are pushing against the cut are compressive stresses.

The other component of the intensity of force acts pa rallel to the
plane of the elementary area ,as in Fig.1.2.This component of the inten-
sity of force is called the shearing stress. It will be designated by the
Greek letter T(tau) . Mathematically it is defined as

AV
U= AS0AA

where A represents area,and V is the component of the force parallel to
the cut. It should be noted that these definitions of stresses at a point in- P, P 4

volve the concept of letting AA—0 and may be questionable from a strict-
Fig.1.2 The nommal and shearing

ly atomic view of matter. However, the homogeneous model implied by 5 of atrees

these equations has been a good approximation to inhomogenous matter on
the macroscopic level . Therefore, this so-called phenomenologlcal approach is used.

The student should form a clear mental picture of the stresses called normal and those called
shearing. To repeat, normal stresses result from force components perpendicular to the plane of the cut,
while sheanng stresses result from components parallel to the plane of the cut.

It is seen from the above definitions of nomal and sheanng stresses that, since they represent the
intensity of force on an area,stresses are measured in units of force divided by units of area.Since a
force is a vector and an area is a scalar, their ratio, which represents the component of stress in a given
direction, is a vectorial quantity.

It should be noted that stresses multiplied by the respective areas on which they act give forces , and
it is the sum of these forces at an imaginary cut that keeps a body in equilibrium .

A metric system of units, referred to as the International System of Units and abbreviated SI, from
the French Systeme International d Unites ,is used in this text. A change to this modemized metric sys-
tem of measurement is takihg place throughout the world. In the United States a number of maior indus-
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tries have announced plans to convert to SI units. Among these are the automotive, agricultural equip-
ment, and business machine industries . These changes make it inevitable that SI units will become the
predominant system of measurement in the United States.

The base units in the SI are meter or metre (m) for length, kilogram (kg) for mass, and second
(s) for time. The derived unit for area is a square meter(m2) ,and for acceleration a meter per second
squared (m/ s%) . The unit of force is defined as a unit mass subjected to a unit acceleration,i.e. , kilo-
grammeter per second squared ( kg* m/s’), and is designated a newton (N) . The unit of stress is the
newton per square meter ( N/ m’), also designated a pascal (Pa). Multiple and submultiple prefixes
representing steps of 1000 are recommended . For example, force can be shown in millinewtons (1 mN =
0.001 N), newtons ,or kilonewtons(1 kN = 1000N), length in millimeters(1 mm = 0.001m) , meters,
or kilometers(1 km= 1000m) , stresses in kilopascals(1 kPa = 10°Pa), nwgapascals(l MPa = 10°Pa),
gigapascals (1 GPa= 10 ’Pa) , etc.

The stress expressed numerically in units of N/ m’ may appear to be unusually small to those ac-
customed to the English system of units. This is because the force of one newton is small in relation to
a pound-force, and a square meter is associated with a much larger area than one square inch. There-
fore, it may be more acceptable to think in terms of a force of one newton acting on one square millime-
ter. This leads to the notation N/mm’, a notation which initially was not recommended . However, since
this is precisely equivalent to the megapascal(MPa) , it is gaining wide acceptance.

If in addition to a plane such as ABCD in Fig.1.1(a) another plane an infinitesimal distance
away and parallel to the first were passed through the body, a thin element of the body would be isolat-
ed. Then, if an additional two pairs of planes were
passed normal to the first pair, an elementary cube of '3
infinitesimal dimensions would be isolated from the
body.Such a cube is shown in Fig.1.3. Here, for
identification purposes, the process of resolution of

stresses into components has been carried further
than discussed above. At each surface the shearing
stress  has been resolved into two components
parallel to a particular set of axes.The subscripts of
the o’ s designate the direction of the nommal stress

along a particular axis, while the stress itself acts on

a plane perpendicular to the same axis . The first sub- o
scripts of the 7’ s associate the shearing stress with a Fig.1.3 'The most general state of stress acting
plane that is perpendicular to a given axis, while the m an element

second designate the direction of the shearing stress.
An infinitesimal cube ,as shown in Fig.1.3. could be used as the basis for an exact formulation of
the problem in mechanics of materials. However, the methods for the study of the behavior of such a
cube (which involve the writing of an equation for its equilibrium and making certain that such a cube,
after deformations caused in it by the action of forces will be geometrically compatible with the adjoin-
—_— 5 —_



ing infinitesimal cubes) are beyond the scope of this course. They are in the realm of the mathematical
theory of elasticity . The procedures used in this text do not resort to the generality implied in Fig.1.3.
The methods used here will be much simpler.

4. Axial Load; Normal Stress

In many practical situations, if the direction of the imaginary plane cutting a member is judiciously
selected , the stresses that act on the cut will be found both particularly significant and simple to deter-
mine. One such important case occurs in a straight axially loaded rod in tension, provided o plane is
passed perpendicular to the axis of the rod. The tensile stress acting on such a cut is the maximum
stress, as any other cut not perpendicular to the axis of the rod provides a larger surface for resisting the
applied force. The maximum stress is the most significant one, as it tends to cause the failure of the ma-
terial .

To obtain an algebraic expression for this maximum stress, consider the case illustrated in Fig.
1.4(a) .If the rod is assumed weightless, two equal and opposite forces P are necessary, one at each
end to maintain equilibrium. Then, as stated in Art. 1-2, since the body as a whole is in equilibrium,
any part of it is also in equilibrium. A part of the rod to either side of the cut x-x is in equilibrium. At
the cut, where the cross-sectional area of the rod is A, a force equivalent to P, as shown in Figs.
1.4(b) and (¢), must be developed. Whereupon, from the definition of stress, the normal stress, or the
stress that acts perpendicularly to the cut, is

_P force [N
o= or [m2] (1-1)
P P
P I Ac
} f -
| I |
f | T
i Axis of )’__ ! d: }_'_"—
the rod p - :
| | ¢ d y'  (b) i (d) 77 (6
r—_——t— -

(a)

T X
4

Fig.1.4 Successive steps in the analysis of a body for stress

This normal stress is uniformly distributed over the cross-sectional area A.The nature of the quantity
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computed by Eq. 1-1 may be seen graphically in Figs.1.4(d) and (e) . In general , the force P is a re-
sultant of a number of forces to one side of the cut or another.

If an additional cut is made parallel to the plane x-x in Fig.1.4(a), the isolated section of the
rod could be represented as in Fig.1.4(f), and upon further” cutting, " an infinitesimal cube as in Fig.
1.4(g) results. The only kind of stresses that appear here are the normal stresses on the two surfaces of
the cube. Such a state of stress on an element is referred to as uniaxial stress. In practice, isometric
views of a cube as shown in Fig.1.4(g) are seldom employed the diagrams are simplified to look like
Lhose of Fig.1.4(h) . Nevertheless, the student must never lose sight of the three-dimensional aspect of
the problem at hand.

At a cut, the system of tensile stresses computed by Eq. 1-1 provides an equilibrant to the exter-
nally applied force . When these normal stresses are mulitiplied by the corresponding infinitesimal areas
and then summed over the whole area of a cut,the summation is equal to the applied force P.Thus the
system of stresses is statically equivalent to the force P.Moreover, the resultant of this sum must act
through the centroid of a section. Conversely, to have a uniform stress distribution in a rod, the applied
axial force must act through the centroid of the cross-sectional area investigated. For example, in the
machine part shown in Fig.1.5(a) the stresses cannot be obtained from Eq.1-1 alone. Here, at a cut
such as A-A, a statically equivalent system of forces developed within the material must consist not only
of the force P but also of a bending moment M that must maintain the externally applied force in equi-

librium . This causes nonuniform stress distribution in the member. This will be treated in Chapter 7.

lf\ \JA M= Pe
' b
}
IA - Section
A 3 A-A
P P P 1
(a) (b)

Fig.1.5 A member with a nonuiform stress distribution at Section A-A

In accepting Eq.1-1,it must be kept in mind that the material’ s behavior is idealized . Each and
every particle of a body is assumed to contribute equally to the resistance of the force. A perfect homo-
geneity of the material is implied by such an assumption. Real materials, such as metals, consist of a
great many grains, while wood is fibrous. In real materials, some particles will contribute more to the re-
sistance of a force than others. Stresses are shown in Figs. 1 .4(d) and (e) actually do not exist. The
diagram of true stress distribution varies in each particular case and is a highly irregular, jagged affair.
However,on the average, or statistically speaking, computations based on Eq. 1-1 are correct, and hence
the computed stress represents a highly significant quantity .

Similar reasoning applies to compression members. The maximum normal or compressive stress can
also be obtained by passing a section perpendicular to the axis of a member and applying Eq. 1-1.The

stress so obtained will be of uniform intensity as long as the resultant of the applied forces coincides
—_ 7 J—



with the centroid of the area at the cut. However, one must exercise additional care when compression
members are investigated . These may be so slender that they may not behave in the fashion considered.
For example, an ordinary meter under a rather small axial compression force has a tendency to buckle
sideways and collapse. The consideration of such instability of compression members is deferred until
Chapter 13. Equation 1-1 is applicable only for axiaily loaded compression members that are rather
chunky ,i.e. ,to short blocks.As will be shown in Chapter 13, a block
whose Least dimension is approximately one-tenth of its length may
usually be considered a short block . For example,a S0 mm by 100 mm
wooden piece may be 500 mm long and still be considered a short
block .

Situations often arise where one body is supported by another. If
the resultant of the applied forces coincides with the centroid of the
contact area between the two bodies, the intensity of force, or stress, be-

tween the two bodies can again be determined from Eq.1-1.1t is cus- Fig.1.6 Bearing stresses occur between
tomary to refer to this normal stress as a bearing stress® . Figure 1.6, the block and pier

where a short block bears on a concrete pier and the latter bears on the

soil, illustrates such a stress. The bearing stresses are obtained by dividing the applied force P by the

corresponding area of contact.

5. Average Shearing Stress

Another situation that frequently arises in practice is shown in Figs.1.7(a),(c),and (e).In all
of these cases the forces are transmitted from one part of a body to the other by causing stresses in the
plane parallel to the applied force.To obtain stresses in such instances, cutting planes as A-A are se-
lected and free-body diagrams as shown in Figs.1.7(b),(d),and (f) are used.The forces are trans-
mitted through the respective cut areas. Hence, assuming that the stresses that act in the plane of these
cuts are uniformly distributed, one obtains a relation for stress

P orce N
=7 or Ere—a [mz] (1-2)

where t by definition is the shearing stress, P is the total force acting across and parallel to the cut,
often called shear,and A is the cross-sectional area of the cut member. For reasons to be discussed
later, unlike normal stress, the shearing stress given by Eq.1.2 is only approximately true. For the cas-
es shown, the shearing stresses actually are distributed in a nonuniform fashion across the area of the
cut. The quantity given by Eq. 1-2 represents an average shearing stress.

The shearing stress, as computed by Eq.1-2,is shown diagrammatically in Fig.1.7(g) . Note that
for the case shown in Fig.1.7(e) there are mwo planes of the rivet that resist the force. Such a rivet is
referred to as being in double shear.

In cases such as those in Fig.1.7(c) and (e),as the force P is applied, a highly irregular pres-
sure develops between a rivet or a bolt and the plates. The average nominal intensity of this pressure is
obtained by dividing the force transmitted by the projected area of the rivet onto the plate. This is re-
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Fig.1.7 Loading conditions causing shearing stresses

ferred to as the bearing stress. The bearing stress in Fig. 1.7(c) is o, = P/(id), where t is the
thickness of the plate and d is the diameter of the rivet. For the case in Fig.1.7(e) the bearing stress-
es for the middle plate and the outer plates are o, = P/(¢,d)and 0, = P/(2¢,d), respectively.

6. Problems in Normal and Shearing Stress

Once P and A are determined in a given problem. Eqs.1-1 and 1-2 are easy to apply. These e-
quations have a clear physical meaning. Moreover, it seems reasonably clear that the desired magnitudes
of stresses are the maximum stresses, as they are the greatest imposition on the strength of a matenal .
The greatest stresses occur at a cut or section of minimum cross-sectional area and the greatest axial
force . Such sections are called critical sections. The critical section for the particular arrangement being
analyzed can usually be found by inspection. However, to determine the force P that acts through a
member is usually a more difficult task.In the majority of problems treated in this text the latter infor-

mation is obtained from statics.



For the equilibrium of a body in space, the equations of statics require the fulfillment of the fol-
lowing conditions:
ZF =0 M =0
SF,=0 3M,=0 (1-3)
2F, =0 ZM =0
The first @lg_m_n@ of Eq. 1-3 states that the sum of all forces acting on a body in any (x,y,z) direc-
tion must be zero. The second column notes that the summation of moments of all forces around any
axis parallel to any(x, y, z) direction must also be zero for equilibrium.In a planar problem.i.e. ,all
members and forces lie in a single plane such as the x-y plane,relations ZF, =0,2M_ =0,and ZM,
=0, while still valid, are trivial. |
» These equations of statics are directly applicable to deformable solid bodies. The deformations
tolerated in engineering structures are usually negligible in comparison with the over-all dimensions of
structures . Therefore, for the purposes of obtaining the forces in members , the initial undeformed dimen-
sions of members are used in computations .
There are problems where equations of statics are not sufficient to detemune the forces in, or those
acting on ,the member. For example, the reactions for a straight beam, shown in Fig. 1.8, supported
vertically at three points, cannot be determined from statics

’ P
alone. In this planar problem there are four unknown reac- /

tion components, while only three independent equations of — —em{
statics are available.Such problems are termed statically in- ‘ t
X Y V4

determinate® . The consideration of statically indeterminate
problems is postponed until Chapter 11. For the present, and Fig.1.8 A statically indeterminate
in the succeeding nine chapters of this text, all structures

and members considered will be statically determinate,i.e.,all of the external forces acting on such
bodies can be determined by Egs. 1-3. There is no dearth of statically determinate problems that are
practically significant.

Equations 1-3 should already be familiar to the student. However, several exmnples where they are
applied will now be given, the professional techniques for their use being stressed stressed” . These examples
will serve as an informal review of some of the principles of statics and will show applications of Eqgs.
1-1 and 1-2.

New Words

. axial [‘zksiol] o. Bl EIAY

component [ kompounont ] n. 4y B, ¥t
_ vessel [ 'vesl] n. &#%

. adequate [ ‘dikwit] a.FE7H

. shaft [faft] n.#F, %
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torque [tok ] n. $H%E

composite [ kompozit] a. A K
rigid [ ridzid] a. RIHERY

deflect [ diflekt] ». ({# )25l , HEHl

. sag [saeg] vi. I

. misalignment [ ‘misolainmont ] n. KX HE, LA IR E
. crack [ krek] v. WrEY

. plaster [ plaiste] n. K%

. undemeath [ Andoni®] n. FHE

. slender [‘slends] a. KK

. compressive [ kem'presiv] a. FE45 )

. collapse [koleps] v. 15

. buckling [ ‘baklin] n. &7, %

. initial [inifsl] a. BFIH

. configuration [kenifigjureifon] n. B4R
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