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Unit 1 Concept of Stress at a Point

If a body is subjected to external forces, a system of internal forces is developed. These inter-
nal forces tend to separate or bring closer together the material particles that make up the body.
Consider, for example, the body shown in Fig. 1.1 (a), which is subjected to the external forces
F,, F,, -+, F.. Consider an imaginary plane that cuts the body into two parts, as shown. Inter-
nal forces are transmitted from one part of the body to the other through this imaginary plane. Let
the free-body diagram of the lower part of the body be constructed as shown in Fig. 1.1 (b). The
forces F, , F,, and F;are held in equilibrium by the action of an internal system of forces distribu-
ted in some manner through the surface area of the imaginary plane. This system of internal
forces may be represented by a single resultant force R and/or by a couple. For the sake of sim-
plicity in introducing the concept of stress, only the force R is assumed to exist. In general, the
force R may be decomposed into a component F, , perpendicular to plane are known as the normal

force, and a component F,, parallel to the plane and known as the shear force.

A

F l
E

(a) (b)

Fig. 1.1 Material particles

If the area of the imaginary plane is to be A, then F,/A and F,/A represent, respec-
tively, average values of normal and shear forces per unit area called stresses. These
stresses, however, are not, in general, uniformly distributed throughout the area under
consideration, and it is therefore desirable to be able to determine the magnitude of both
the normal and shear stresses at any point within the area. If the normal and shear forces
acting over a differential element of area AA in the neighborhood of point O are AF, and
AF,, respectively, as shown in Fig. 1.1 (b), then the normal stress ¢ and the shearing

stress 7 are given by the following expressions:

N
T A AA
(1. D
=limA—F'
‘ a0 AA
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In the special case where the components F,and F, are uniformly distributed over the entire
area A, then 6= F,/A and 7= F,/A.

Note that a normal stress acts in a direction perpendicular to the plane on which it acts
and it can be either tensile or compressive. A tensile normal stress is one that tends to pull
the material particles away from each other.

A shear stress, on the other hand, acts parallel to the plane on which it acts and tends
to slide (shear) adjacent planes with respect to each other. Also note that the units of
stress (@ or 7) consist of units of force divided by units of area. Thus, in the British grav-
itational system of measure, such units as pounds per square inch (psi) and kilopounds per
square inch (ksi) are common. In the metric (SI) system of measure, the unit that has
been proposed for stress is the Newton per square meter (N/m?), which is called pascal
and denoted by the symbol Pa. Because the pascal is a very small quantity, another SI unit
that is widely used is the megapascal (10° pascals) and is denoted by the symbol MPa.
This unit may also be written as MN/m?®.

Components of Stress

In the most general case, normal and shear stresses at a point in a body may be con-
sidered to act on three mutually perpendicular planes. This most general state of stress is
usually referred to astriaxia. It is convenient to select planes that are normal to the three
coordinates axes x, y and z and designate them as the X, Y, and Z planes, respectively.
Consider these planes as enclosing a differential volume of material in the neighborhood of
a given point in a stressed body. Such a volume of material is depicted in Fig. 1. 2 and is
referred to as a three-dimensional stress element. On each of the three mutually perpen-
dicular planes of the stress element, there acts a normal stress, and a shear stress which is
represented by its two perpendicular components.

The notation for stresses used in this text consists of affixing one subscript to a nor-
mal stress, indicating the plane on which it is acting, and two subscripts to a shear stress,

the first of which designates the plane on

y which it is acting and the second its direction.
o-y . .
I For example, 6, is a normal stress acting on
Y plane X )
! T Ty X plane the X plane, 1,, is a shear stress acting on the
i Tay X plane and pointed in the positive y direc-
‘ . . . .
; Ty tion, and 7,. is a shear stress acting in the X
> Oz
2 ] . P plane and pointed in the positive z direction.
O | I It is observed from Fig. 1.2 that three
7 o 251' + "
e stress components exist on each of the three
dz mutually perpendicular planes that define the
z Z plane .
" stress element. Thus there exists a total of
Fig. 1.2 Volume of material nine stress components that must be specified



Unit 1 Concept of Stress at a Point

in order to define completely the states of stress at any point in the body. By considera-
tions of the equilibrium of the stress element, it can be shown that r,, =7, 7= =7, 7.
=rt.,, so that the number of stress components required to completely define the state of
stress at a point is reduced to six.

By convention, a normal stress is positive if it points in the direction of the outward
normal to the plane. Thus a positive normal stress produces tension and a negative normal
stress produces compression. A component of shear stress is positive if it is pointed along
the positive direction of the corresponding axis. If, however, the outward normal is in the
negative direction of the coordinate axis, a positive shear stress will also be in the negative
direction of corresponding axis. The stress components shown in Fig. 1. 2 are all positive.
It should be noted, however, that such a sign convention for shear stress is rather cumber-
some. It is only used in the analysis of triaxial stress problems that are usually dealt with
in advanced courses such as the theory of elasticity.

A complete study of the triaxial or three-dimensional state of stress is beyond the
scope of this chapter, and the analysis that follows is limited to the special case in which
the stress components in one direction are all zero. For example, if all the condition re-
duces to the z direction are zero (i.e., r. =7, =0.=0), the stress condition reduces to a
biaxial or two-dimensional state of stress in the xy plane. This state of stress is referred
to as plane stress. Fortunately many of the problems encountered in practice are such that

can be considered plane stress problems.

New Words and Expressions

be subject to HKZZ, SFeereer ) 3% fid tensile adj. WK, PLHE

external force #p S compressive adj. HAE4E K, E4EH
internal force W slide v. & n. ¥

be transmitted from ...to M ee---{E 3 3] adjacent adj. 4P, BEIEHK
imaginary adj. {BAEK, BEHK, EH psi pounds per square inch HJ 455
free-body n. HH#&, FEEE MPa megapascal 485 JEIA
equilibrium n. W47, FFFEHEIRE S gravitational adj. K

be decomposed into 43 fi# designate wt. 3§ B, 8§ H; ». F¥ &,
perpendicular adj. FTEHK, IEXH Rk

resultant force & /1 depict v. %, H#ik

be parallel to Heeeeer AT affixing adj. MihNE

normal force ¥ f1, IER N subscript n. ¥R

shear force By fj positive adj. 1E/

uniformly adv. —HtH#, ¥15)H#h positive normal  1F #[1]

magnitude n. K/ negative direction #ifa], 2 J M
normal stress ¥R f1, IER K cumbersome adj. ITRH, BRBE
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triaxial adj. =Hfy, =4, ZEH plane stress ¥-Ti K /]
elasticity n. #7J7, 3P (J1%)

Reading Material Theory of Stress

This chapter presents the three-dimensional theory of stress of a continuous medium.
As in the theory of deformation, by a continuous medium we mean a material in which
each volume of substance is sufficiently dense so that concepts such as mass density, tem-
perature, stress, and so forth have meaning at every point in the region occupied by the
material. The theory of stress rests upon Newton’s laws, which are independent of the
nature of materials that fall within the continuous-medium model. Consequently, the the-
ory of stress developed here is applicable to all continuous media, regardless of their me-
chanical behavior of response to forces — that is, whether they behave elastically, plasti-
cally, viscoelastically, or in any other manner. The main part of the chapter is devoted to
classical stress theory in which stress couples and body couples are neglected. A brief dis-
cussion of the concept of stress couples and body couples is presented in Appendix.

1 Definition of Stress

It is noted in elementary mechanics that point forces never really occur in nature;
forces are always distributed throughout regions. Nevertheless, the point force is an in-
dispensable concept in mechanics. For example, distributed forces that act on a rigid body
are dynamically equivalent to a single point force and a couple.

To gain insight into the nature of distributed forces, we consider the forces that act
inside a solid or a fluid. The theories of deformable bodies (fluid mechanics, elasticity,
and plasticity) are based on the concept of action by direct contact. If we imagine a body
to be partitioned intocells by fictitious surfaces, one cell does not exert a direct effect on
another cell unless it is in contact with it. If two cells are in contact with each other along
one of the fictitious surfaces of separation, a force may be transmitted from the first cell to
the second cell and vice versa.

To elaborate on this idea, let us pass a fictitious plane Q through a body and mark an
area A on the plane. One side of the plane Q will be designated as positive, the other side
as negative (Fig. 1. 3). The material on the positive side of the plane Q exerts a force upon
the material on the negative side. This force is transmitted through the plane Q by direct
contact of material on the two sides of the plane. The force that is transmitted through
the area A is denoted by F. Note that we do not use the notations AA, AF as in some
works, as use of these notations in the limiting process that defines stress may lead to con-
fusion with the concept of derivative of a vector. In general, F is not perpendicular to the
plane Q. In accordance with Newton’s law of reaction, the material on the negative side

of plane Q transmits, through the area A, a force equal to —F. The force F is an internal

4



Unit 1 Concept of Stress at a Point

force, as its reaction is exerted within the body.
The force F may be resolved into components F, and F,, such that the component F,
is perpendicular to plane Q, and the component F, is tangent to plane Q (Fig.1.3). The

component F, is called the normal force on

the area A, and the component F; is called Positive side

the shearing force on the area A. The word
“normal” has the same meaning as the word
“perpendicular”.

The foregoing concepts are equally ap-
plicable to stationary bodies and to deforming
bodies (e. g., to flowing fluids). During a
deformation process, F, and F, ordinarily va-
ry with time. The forces F, and F, naturally Negative side
depend on the area A. The magnitudes of Pl ds® Doy wnil plane
the average forces per unit area are F,/A and
F,/A. These ratios are called the average normal stress and the average shearing stress on
the area A. The concept of stress at a point is obtained by letting area A be infinitesimal.
Then the forces F, and F, approach zero, but the ratios F,/A and F,/A usually approach
limits different from zero. The limiting values of the ratios F,/A and F,/A are called the
normal stress and the shearing stress on plane Q at the point where the infinitesimal area A
is located. In general, these stresses depend not only on the coordinates of the infinitesi-
mal area A but also on the plane in which the area A lies. The normal stress and the
shearing stress may be regarded as normal and tangential projections of a stress vector that
is associated with the infinitesimal area A. Accordingly, we may speak of the direction of
the stress vector that acts at a given point on a given plane; it is the direction of the infini-
tesimal force that acts on the elemental area. Mathematically, the foregoing remarks may

be summarized as follows:

. F,_ . F,
ARA T MmATT -2

Where: ¢ is the normal stress at a point in area A in plane Q and z is the shearing stress at
the same point in area A in plane Q.

There are significant differences between the internal forces in fluids and in solids.
Solids frequently sustain large internal tensile forces. In contrast, normal forces in fluids
are usually compressive. In other words, the normal force transmitted from the fluid on
one side of a fictitious plane to the fluid on the other side is usually a push rather than a
pull. In fluids, the reactions (pushes) measured per unit area are referred to as pressures
(negative stresses). In the case of solids, we retain the terminology “stress” and consider

pressures or compressions as negative stresses.



K Ak H %l %k

The materials that are known as fluids have another property that distinguishes them
from solids. Fluid materials flow (i.e., they deform continuously) whenever shearing
stresses exist. It is customary to designate this property as the definition of a fluid. Ac-
cordingly, shearing stresses cannot exist in a fluid that is at rest. This definition may be
applied to ascertain whether a given material is a fluid. For example, clay does not flow
unless the absolute value of the shearing stress exceeds a certain positive value. Conse-
quently, clay is classified as a plastic solid rather than a fluid.

Intuitively, we should expect that the shearing stress in free-flowing fluids, such as
air and water, must be small, even though the fluids are in motion. This observation has
led to the concept of a frictionless fluid, that is, an ideal fluid. A frictionless fluid is de-
fined to be a material in which shearing stresses cannot be developed. Much of classical
hydrodynamics is concerned with frictionless fluids. However, the theory of frictionless
fluids has not been so useful as it was originally expected to be, as significant shearing
stresses always exist in a flowing fluid in the regions near solid boundaries.

A fluid in which shearing stresses are developed when flow occurs is said to be vis-
cous. To some extent, all real fluids are viscous.

2 Stress Notation

In the theory of stress of continuous bodies, a distinction is made between the follow-
ing two types of forces: Dbody forces, acting on the elements of volume (or mass) of the
body, and @ stresses, acting on surface elements inside or on the boundary of the body.
Examples of body forces are gravitational forces, magnetic forces, and inertia forces. Ex-
amples of stresses (of surface forces) are contact forces between solid bodies, or hydro-
static pressure between a solid body and a fluid.

To establish a stress notation, we imagine a plane surface cutting through a body in a
deformed state (stressed state) and consider the interaction between the two parts of the
body across the surface of separation. For simplicity, we take the body to be a regular
prism with sides parallel to axes (X, Y, Z) (Fig. 1. 4), with the plane of separation per-
pendicular to the X axis. The two parts of the body are shown separated for clarity. A
positive X plane in the part on the left is shaded. We define a positive X plane as one
whose outward normal points in the positive X direction. The shaded positive X plane is
considered to be a rectangle with sides AY, AZ. The X surface, which bounds the right
part of the body and coincides with the positive X surface of the left part, is also shaded in
Fig. 1. 4. Because its outward normal points in the negative X direction, it is a negative X
plane. As noted in Section 1, the force exerted by the negative X surface on the positive X
surface is & AY AZ, where ¢ is the stress vector. In general, ¢ is not perpendicular to the
positive X plane. Hence, we may resolve the force 6AY AZ and the associated stress into
components along the positive (X, Y, Z) directions. The (X, Y, Z) components of

stress are denoted by o.. » 6., s 0.. » respectively. Hence, the notation ¢,, denotes the stress

6



Unit 1 Concept of Stress at a Point

component normal to the positive X plane. Similarly, the notation o,,, 0. denotes the
shearing components (or tangential components) of the stress vector that lies in the posi-
tive X plane, the components being directed in the positive Y, Z directions, respectively.
We note that in the above notation the first subscript denotes the surface upon with ¢ acts,

and the second subscript denotes the direction of the stress component.

Y

Fig. 1. 4 Stress notation

By Newton’s third law (action and reaction), the stress components that act on the
negative X surface (right part) must act in the opposite direction (Fig.1.4). Thus, a
positive component g,; relative to the negative X surface means a stress component in the
negative j direction. Likewise, this holds for the negative X plane of the left part (the
surface obtained by a translation of the negative X surface of the right part through a dis-
tance AX). In the theory of deformable solids, we will consider the above convention to
define positive stress components. Negative components are shown schematically by re-
versing the direction of the arrow denoting positive components. For example, consider an
infinitesimal cubic element at a point O in a body, with sides parallel to axes (X, Y, Z)
(Fig. 1. 4). The stress components acting on positive and negative planes are shown in the
positive senses. Thus, on positive planes the arrowheads point in the positive senses of
the corresponding axes, whereas on negative planes they point in the negative senses of the
axes.

The axes (X, Y, Z) are attached to frame F. Because the body (Fig. 1. 4) is in a de-
formed state, the quantities (. » 0.y5 ***» 0..) are defined relative to the deformed state
(stressed state) of the body. Thus, it follows that the equation of motion of the body is
most simply written in terms of spatial coordinates.

The stress notation illustrated in Fig. 1. 5 is a conventional notation. However, other
stress notations are common. The more frequent notations for components of the stress
tensor are listed in Table 1. 1.

Index Notation. The set of nine stress components associated with the cube of

Fig. 1.5 (stress at point Q) may be written in the index form ¢, 7, j =1, 2, 3.
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Z
Fig. 1.5 Set of nine stress components
Table 1. 1 Summary of Stress Notations

Engineering O oy o= Ty = T T = Tex Tye = Txy

Some American writers Or O35 G Ozy =0y Oz =0 Oy =0zy

Love (also some Russian and .
English writers) s Yy % Ko =¥e Al Ye=Zy

Planck —X. =Yy —Z. —X;==Y; —X.=—2, —Y.=—2,

Some English writers P Q S T U

Here we have employed the notation

Oz — 011 30y — 022 30z — 033

(1.3)

Ozy — 012 90z — 013 90y — 023

and so on.
New Words and Expressions

three-dimensional =4/ ; STIKK

mechanical adj. P ; RMA; FITHE
YE

appendix n. Mis%; HE; Miiny

dynamically adv. 7% 16 /1 #u; A W7 AE
1

partitioned wvt. 43 #| (partition )t % 4>
1a])

elaborate adj. ¥.OWER; HERK; %%
PO

confusion n. B, BHL; B

perpendicular adj. # H IEZ #); H L BE
Ui )

stationary adj. [EEM; &1L/

magnitudes n. K/N; &%; BH

infinitesimal adj. JC35/Ni; H/DH

tangential adj. YIZKH, IEVIM

vector n. K

mathematically adv. BARH, $2 b

tensile adj. L HY; AIHKH

fictitious adj. HMEMIH); BUAER; BUEK

terminology n. KiE, HF



Unit 1 Concept of Stress at a Point

customary n. 18 ; 5 magnetic adj. AREHER; AEREI ST
designate vt. F85E; FEYR; FT-e---- ELHN inertia n. 1BME; R4l

clay n. #it; Jet; RAE; IR LMWK prismn BB K

observation n. WA%&; Wth; WEHL parallel n. ¥ 4T £&; adj. ¥ 478, #
frictionless adj. TCEEHEHK; 6K ] #4

hydrodynamics n. Jik f12; Ksh % subscript n. F#hr; BE

notation n. fF5; HE likewise adv. [FREHL

gravitational adj. EHHK, 51 HH schematically adv. 5 M:H#; 3% E



Unit 2 Mechanical Properties of Material

An engineering stress-strain diagram representing the behavior of steel alloys and alu-
minum alloys in tension is shown schematically in Fig. 2. 1. These diagrams will be used to
introduce and discuss the significant mechanical properties of materials.

The diagram shown in Fig. 2. 1 define two ranges of material behavior known as the e-
lastic and plastic (or inelastic) ranges. In genenal, the elastic range is that of the diagram
a linear relation between the stress and the strain (approximately segment OA in
Fig. 2. 1), and it is the part of the stress-strain diagram that has already been discussed
and is expressed mathematically by Hooke’s law (i.e. , e=¢/E)) up to the proportional
limit for the material. The plastic or inelastic range is that part of the stress-strain dia-
gram that defines a nonlinear relation between the stress and the strain and is reprensented
by segment by segment BF in Fig. 2. 1. Several empirical equations have been proposed to
describe the inelastic relation between the stress and the strain, but the most widely used
is the one known as the Ramberg-Osgood, which may be expressed as follows:

=2+(%) 2.1

Where: B and n are constants for a given material. The Ramberg-Osgood relation as ex-

pressed in equation (2. 1) will be utilized to develop the use of the modified tangent modu-
lus method for the analysis of columns.

Proportional Limit. The proportional limit for a given material represents the value of

stress beyond which the material no longer behaves in such a way that the stress is propor-

tional to strain. The proportional limit, e&,, is represented by the ordinate to point A

in Fig. 2. 1.

€ (0]
v—*-lr* Permanent strain

(a) (b)
Fig. 2.1 Elastic and plastic ranges

Elastic limit. The elastic limit, ., for a given material is the value of stress beyond
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which the material experiences a permanent deformation even after the stress is removed.
Thus, if the material is loaded to any level of stress within the elastic limit and the load is
then removed, it will regain its original dimensions and is said to behave elastically. How-
ever, if the load exceeds the elastic limit before it is removed, the material does not fully
regain its initial dimensions. In such a case the material is said to experience a permanent
deformation.

The elastic limit is represented by the ordinate to point B in Fig. 2. 1. Its determina-
tion, experimentally, is extremely difficult, and therefore its exact location on the stress-
strain diagram is usually not known, even though it is generally higher than the propor-
tional limit @¢,. For all practical purposes, however, the elastic limit ¢, and the propor-
tional limit ¢, may be assumed tohave the same value.

Modulus of Elasticity. The modulus of elasticity, E, is the constant of proportionality
between stress and strain in Hooke’ s law. Physically, it represents the slope of the
stress-strain diagram within the proportional range of the material (i. e, the slope of the
straight segment OA in Fig. 2.1). The term stiffness is used to describe the capacity of
materials to resist deformation in the elastic range and it is measured by the modulus of e-
lasticity. For example, steels with a modulus of elasticity of about 30 X 10° psi are stiffer
than aluminums, with a modulus of elasticity about 10X 10° psi.

Yield Point. The yield point, o,, is the stress at which the material continues to de-
form without further increase in the stress. The stress may even decrease slightly as the
deformation continues past the yield point. Some material, notably the plain carbon
steels, exhibit a well-defined yield point, as shown by point C in Fig.2.1 (b). If the
stress decreases past this point, it is referred to as the upper yield point, in contrast to the
lower yield point represented by point D in Fig. 2.1 (b) and beyond which the stress in-
creases with further strain.

Yield Strength. For materials having a stress-strain diagram such as shown in Fig. 2. 1
(b) (those that do not exhibit a well-defined yield point) a value of stress, known as the
yield strength for the material, is defined as one producing a certain amount of permanent
strain. Although several values of permanent strain may be used in defining the yield
strength for a material, the most commonly encountered values are 0. 0020 and 0. 0035.

To determine the yield strength, @, , the assigned numerical value of permanent strain
is measured along the strain axis of the stress-strain diagram to locate a point through
which a line is drawn parallel to the straight portion (segment OA) of this diagram. The
straight line is then extended until it intersects the stress-strain curve at the desired point.
This construction is shown schematically in Fig. 2. 1 (b), in which the ordinate to point G
represents the value of the yield strength for the material.

Ultimate strength. The ultimate strength, ¢, represents the ordinate to the highest

point in the stress-strain diagram and is equal to the maximal load carried by the specimen
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