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PREFACE

This book gives a present-day account of Marston Morse’s theory of
the calculus of variations in the large. However, there have been im-
portant developments during the past few years which are not mentioned .

Let me describe three of these
R. Palais and S. Omale nave studied Morse theory for a real-valued

function onr an infinite dimensional manifold and have given direct proofs
of the main theorems, without making any use of finite dimensional ap-
proximations. The manifolds in question must be locally diffeomorphic

to Hilbert space, and the function must satisfy a weak compactness con-
dition. As an exaaple, to study paths on a finite dimensional manifold
M one considers the Hilbert manifold consisting of all absolutely con-

tinuous paths o: [0,1] —» M with square integrable first derivative. Ac-

counts of this work are contained in R. Palais, Morse Theory on Hilbert

Manifolds, Topology, Vol. 2 (1963), pp. 299-340; and in S. Smale, Morse
Theory and & Non-linear Generalization of the Dirichlet Problem, Annals

of Mathematics, Vol. 80 (1964), pp. 382-396.

The Bott perliodicity theorems were originally inspired by Morse
theory (see part IV). However, more elementary proofs, which do not in-
volve Morse theory at all, have recently been given. See M. Atiyah and
R. Bott, On the Periodicity Theorem for Complex Vector Bundles, Acta

Mathematica, Vol. 112 (1964), pp. 229-247, as well as R. Wood, Banach
Algebras and Bott Periodicity, Topology, 4 (1965-66), pp. 371-389.
Morse theory has provided the inspiration for exciting developmeuts
in differential topology by S. Smale, A. Wallace, and others, including
a proof of the generalized Poirncaré hypothesis in high dimensions. I
have tried to describe some of this work in Lectures on the h-cobordism

theorem, notes by L. Siebenmann and J. Sondow, Princeton University Press,

1965.
Let me take this opportunity to clarify one term which may cause con-

fusion. In §12 I use the word "energy" for the integral

v
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along a path o(t). V. Arnol’d points out to me that mathemeticians for
the past 200 years have called E the "action"integral. This discrepancy
in terminology is caused by the fact that the integral can be interpreted,
in terms of a physical model, in more than one way.

Think of a particle P which moves along a surface M during the time
interval 0 <t < 1. The action of the particle during this time interval
is defined to be a certain constant times the integral E. If no forces
act on P (except for the constraining forces which hold it within M), then
the "principle of least action" asserts that E will be minimized within
the class of all paths joining »(0) to w(1), or at least that the first
variation of E will be zero. Hence P must traverse a geodesic.

But a quite different physical model is possible. Think of a rubber
band which 1s stretched between two points of a slippery curved surface.
If the band is described parametrically by the equation x = o(t), 0 <t
< 1, then the potential energy arising from tension will be proportional
to our integral E (at least to a first order of approximation). For an
equilibrium position this energy must be minimized, and hence the rubber
band will describe a geodesic.

The text which follows is identical with that of the first printing
except for a few corrections. I am grateful to V. Arnol’d, D. Epstein

and W. B. Houston, Jr. for pointing out corrections.

J.W.M.

Los Angeles, June 1968.
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PART I

NON-DEGENERATE SMOOTH FUNCTIONS ON A MANIFOLD.

§1. Introduction.

In this section we will illustrate by a specific example the situ-
ation that we will investigate later for arbitrary manifolds. Let us con-
sider a torus M, tangent to the plane V, as indicated in Diagram 1.

Diagram 1.

let f: M—=R (R always denotes the real numbers) be the height
above the V plane, and let M® be the set of all points x € M such that
f(x) < a. Then the following things are true:

(1) If a<o0="f(p), then M 1s vacuous.

(2) If f(p) < &< f(q), then M® 1s homeomorphic to a 2-cell.

(3) If f(q) <a<f(r), then M®* 1s homeomorphic to a cylinder:

() If f(r) < &< f(s), then ¥ 1s homeamorphic to a compact
manifold of genus one having a circle as boundary:
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(5) If f(s) <a, then M* {is the full torus.

In order to describe the change in M as a passes through one
of the points f(p),f(q),f(r),f(s) 1t is convenient to consider homotopy
type rather than homeomorphism type. In terms of homotopy types:

(1) = (2) 1s the operation of attaching a 0-cell. For as far as
homotopy type is concerned, the space M®, f(p) < a < f(q), cannot be dis-

tinguished from a 0-cell:
) @

means "1s of the same homotopy type as."

n_n
~

Here

(2) = (3) 1is the operation of attaching a 1-cell:

=B

(3) = (4) 1is again the operation of attaching & 1-cell:

Y ©

(4) = (5) 1is the operation of attaching a 2-cell.

The precise definition of "attaching a k-cell" can be given as
follows. Let Y be any topologlcal space, and let

e . (xer¥:Ixl<

be the k-cell consisting of all vectors in Euclidean k-space with length < 1.



§1. INTRODUCTION 3

The boundary
& . (xeRr¥: Ixll = 1)

will be denoted by gk'orr g: 'Ly 1sa continuous map then

k
Yo
ge

(Y with a k-cell attached by g) 1s obtained by first taking the topologi-
cal sum (= disjoint union) of Y and eX, and then identifying each
x € 857 with g(x) € Y. To take care of the case k = 0 let e bea
point and let &° = 37! be vacuous, so that Y with a 0-cell attached is
Just the union of Y and a disjoint point.

As one might expect, the points p,q,r and s at which the hamo-
topy type of M changes, have a simple characterization in terms of f.
They are the critical points of the function. If we choose any coordinate
system (x,y) near these points, then the derivatives g% and g% are
both zero. At p we can choose (x,y) so that f = x2 + ya, at s so
that f = constant -x2 - ya, and at ¢ and r so that f = constant +
x2 - ye. Note that the number of minus signs in the expression for f at
each point is the dimension of the cell we must attach to go from M® to
Mb, where a < f(point) < b. Our first theorems will generalize these

facts for any differentiable function on a menifold.

REFERENCES
For further information on Morse Theory, the following sources are
extremely useful.

M. Morse, "The calculus of variations in the large," American
Mathematical Society, New York, 193h.

H. Seifert and W. Threlfall, "Variationsrechnung im Grossen,"
published in the United States by Chelsea, New York, 1951.

R. Bott, The stable hamotopy of the classical groups, Annals of
Mathematics, Vol. 70 (1959), pp. 313-337.

R. Bott, Morse Theory and its application to hamotopy theary,
Lecture notes by A. van de Ven (mimeographed), University of

Bonn, 1960.
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§2. Definitions and Lemmas.

The words "smooth" and "differentiable" will be used interchange-
ably to mean differentlable of class Cc”. The tangent space of a smooth
manifold M at a point p will be denoted by 'I'Mp If geM—=N isa
smooth map with g(p) = q, then the induced linear map of tangent spaces
will be denoted by g,: ’I‘M.p - TNq.

Now let f be a smooth real valued function on a manifold M. A
point p € M 1s called a critical point of f 1f the induced map
b 7 'mp =T nf(p) is zero. If we choose a local coordinate system
(x‘ XN ina neighborhood U of p this means that

LI ]

af of
—():...-—():0.
ax’p ax“p

The real number f(p) 1s called a critical value of f.

We denote by M the set of all points x € M such that f(x) < a.
If a 1s not a critical value of f then it follows from the implicit
function theorem that M* 1s a smooth manifold-with-boundary. The boundary
£~'(a) 1s a smooth submanifold of M.

A critical point p 1s called non-degenerate if and only if the
matrix \

( axibij (p))
is non-singular. It can be checked directly that non-degeneracy does not
depend on the coordinate system. This will follow also from the following
intrinsic definition.

If p 1is a critical point of f we define a symmetric bilinear
functional f,, on TMp, called the Hessian of f at p. If v,ve 'I'H.p
then v and w have extensions ¥ and ¥ to vector fields. We let =
Tau(V,W) = Vp(?(r)), vhere Vp is, of course, just v. We must show that
this is symmetric and well-defined. It is symmetric because

Vp(q(f)) = Wp(?(f‘)) = W,?]p(r) =0

vhere [¥,¥] 1s the Polsson bracket of ¥ and ¥, and where [V,v’i]p(f) =0

Here W(f) denotes the directional derivative of f in the direction ¥.
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since f has p as a critical point.

Therefore f,, 18 symmetric. It 1s now clearly well-defined since
Vp(a(t‘)) = v(¥(f)) 1s independent of the extension ¥ of v, while
QP(V(I')) is independent of W.

If (x’,...,xn) is a local coordinate systemand v = I 8 _f

w=Lb we can take ¥ = L b‘1 _j' vhere bJ now denotes a con-

stant function. Then
5 f 3% )
f;Q(V,U) = V(V(f))(P) = v(Z bj Sx—j') = 1231 51 bJ m (D) ;

2
so the matrix ( éqar% (p)) represents the bilinear function f,, with

3 3
respect to the basis glp,..., o Y

We can now talk about the index and the mullity of the bilinear
functional f,, on TMp. The index of a bilinear functional H, on a vec-
tor space V, 1s defined to be the maximal dimension of a subspace of V
on which H 1s negative definite; the nullity is the dimension of the null-
space, i.e., the subspace consisting of all v € V such that H(v,v) = 0
for every w € V. The point p 1s obviocusly a non-degenerate critical
point of f if and only if f,, on ’mp has nullity equal to 0. The
index of f,, on 'mp will be referred to simply as the index of f at p.
The Lemma of Morse shows that the behaviour of f at p can be completely
described by this index. Before stating this lemma we first prove the

following:

LEMMA 2.1. Let f be a C” function in a convex neigh-
borhood V of 0 in RP, with f(0) = 0. Then

£(xg,0000Xp) = 3 xigl(x,,...,xn)

a1
for some suitable C” functions 8 defined in V, with
31(0) - 8 (0)
: df(tx
0 1-1

1
Therefore we can let gl(x,,...,xn) -f %’%1 (tx“...,txn) dat .
0
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IEMMA 2.2 (Lemma of Morse). Let p be a non-degenerate
critical point for f. Then there is a local coordinate

system (y‘,...,yn) in a neighborhood U of p with
yi(p) =0 for all 1 and such that the ildentity

I T N 4 SRR ¢ LIPS ¢t LN G L
holds throughout U, where A 1is the index of f at p.

PROOF: We first show that if there is any such expression for f,
then » must be the index of f at p. For any coordinate system
(z‘,...,zn), if

£(@) = £p) - (21 (@)% ... - (2M@?+ (2@ 4 L s ()2

then we have
-2 if 1=J3<

’

2

a_1.§a_f5(p). 2 if 1=3>1,
Z 2
0 otherwise

)

which shows that the matrix representing f,, with respect to the basis

)

d
ey — is
FYAL SO Y 4

Therefore there i1s a subspace of TM.p of dimension » where f,, 1s negs-
tive definite, and a subspace V of dimension n-» where f,, 1s positive
definite. If there were & subspace of 'mp of dimension greater than »
on which f,, were negative definite then this subspace would intersect V,
which is clearly impossible. Therefore A 1is the index of f,,.

We now show that a sultable coordinate system (y1 oo, 7 exists.
Obviously we can assume that p is the origin of R" and that f(p) = £(0) = 0.

By 2.1 we can write
n

f(xl,...,xn) -z ngj(x1,...,xn)
3=

for (x,,...,xn) in some neighborhood of 0. Since 0 is assumed to be a

critical point: -
(0) = (o) =0,
0 " T
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Therefare, applying 2.1 to the 33 we have

Sj(le"'lxn) = E xihij(x‘l""’ﬁl)

i.‘

for certain smooth functions hij' It follows that

£(Xy,00e0Xy) = i xixjhij(x‘,...,xn) @

'J-1

We can assume that hj_J = hji’ since we can write F‘ij = “f(hij’ hJi)’
and then have ﬁij - ﬁji and f =X xixjﬁij . Moreover the matrix (ﬁij(o))

2
is equal to (%ﬁ—;?(o)), and hence is non-singular.

There is a non-singular transformation of the coordinate functions
which gives us the desired expression for f, in a perhaps smaller neigh-
borhood of 0. To see this we just imitate the usual diagonalization proof
for quadratic forms. (See for example, Birkhoff and MacLane, "A survey of
modern algebra," p. 271.) The key step can be described as follows.

Suppose by induction that there exist coordinates Uy,...,w, in

a neighborhood U, of 0 so that

f =+ (u1)21 e t (UT,_‘)2 + Z uiuJHu(u1,...,an)
>r

22
throughout U,; where the matrices (Hij(uw"""n)) are symmetric. After
a linear change in the last n-r+1 coordinates we may assume that H,.(0) 0.
let g(u,,...,u;) denote the square root of 'Hrr(“v“"un”‘ This will
be a smooth, non-zero function of u,,...,u, throughout some smaller neigh-
borhood U, CU, of 0. Now introduce new coordinates Vyyere,Vy by

vy ey fori dr
va(uy,e,u) - 3(“1""'“1-1)[“1- + z uiliu(u.l,...,%)/"ﬂ"(ul,...,uh)].
iD>r
It follows fram the inverse function theorem that Vyseee, Vg will serve as
coordinate functions within some sufficiently small neighborhood U3 of 0.
It is easily verified that f can be expressed as

f = z 1(V1)2* Z vivJH;_J(v“...,vn)
ir 1,>r
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throughout U3. This completes the induction; and proves Lemma 2.2.
COROLLARY 2.3 Non-degenerate critical points are isolated.

Examples of degenerate critical points (for functions on R and
R2) are given below, together with pictures of their graphs.

-1 /x2

sin?(1/x) .
is a degenerate critical point. The origin is a degenerate, and
non-isolated, critical point.

() f(x) = x3. The origin (b) F(x) = e

(¢) f(x,y) = :nz3 - 3xy2 = Real part of (x + 1y)3.
(0.0) 1s a degenerate critical point (a "monkey saddle").



