2005

EDITION

China Edition
Published by Shanghai World Publishing Corporation

ZPRx & Joo e 3)

1209320
Microsoft

i
i,f o> ¢ f -

oo ;
| Sy
p
!

Microsoft® ASPVVNET 2.0
Step By Step-—-

LRI

¥ A i . B

George Shepherd

B H R4 B (CIP) iz

Microsoft ASP. NET 2.0 By A\ I'TEI¥EIE - €30/ (3R) e b R 4835
— ki bt R R R AR ,2007.6

ISBN 978 -7 - 5062 —8334 -2

L M- .50 I ETHIE - B - 332 IV. TP393. 092
b [iR A< B 548 CIP $df#% (2007) 28 083239 5

© 2007 by Microsoft Corporation. All rights reserved.

Original English language edition © 2005 by George Shepherd. All rights reserved.
Published by arrangement with the original publisher, Microsoft Corporation, Redmond,
Washington, U. S. A.

Microsoft ASP. NET 2.0: Hi Al 12 @
(215G - RBREE =

LR 2 EMrehod) FBERAT
¥ SCH 185 5 B B
BRI 4w 5 200010
(/A7) HiF :021 — 63783016 %% K A4THE)
LTI EHSEN R BRI
& BLERSE & i, E S BRI BRR
(R Rl HE% :021 - 68121468)
FHF R ELH

FFA.787 x960 1/16 ER3K.28.25 <E¥:847 000
2007 4£6 A4 1 fR 2007 4E 6 H55 1 RENRI
ISBN 978 -7 - 5062 —8334 —2/T - 159
&% .09 —2007 —443 &

SEH:188.00 7T
http : //www. wpesh. com

Dedicated to

Ted Gregory Daston Shepherd

Introduction

This book will help you figure out how to write Web applications using Microsoft’s most cur-
rent version of its HTTP request processing framework—ASP.NET 2.0. Web development has
come a long way since the earliest sites began popping up in the early 1990s. The world of
Web development offers several different choices as far as development tools go. Over the past
few years, ASPNET has evolved to become one of the most consistent, stable, and feature-rich
frameworks available for managing HTTP requests.

ASP.NET together with Visual Studio include a number of features to make your life as a Web
developer easier. For example, Visual Studio starts you off with several very useful project
templates from which to develop your site. Visual Studio also supports a number of develop-
ment modes, including using Internet Information Services directly to test your site during
development, using a built-in Web server, or developing your site over an FTP connection.
The debugger in Visual Studio lets you run the site and step through the critical areas of your
code to find problems. The Visual Studio designer enables effective user interface develop-
ment, allowing you to drop control elements onto a canvas to see how they appear visually.
These are but a few of the features built into the ASP.NET framework when paired with Visual
Studio.

While ASPNET and Visual Studio offer excellent tools for writing Web applications, Web
development on the Microsoft platform hasn’t always been this way. The road to ASP.NET 2.0
has been nearly a decade in the making.

The Road to ASP.NET 2.0

Until about 1993, there were very few Web servers in the world. Most of these earliest Web
servers lived at universities or other research centers. In the early 1990s, the number of Web
sites available began to increase dramatically. If you used the Web back in the early 1990s,
chances are you probably came across little more than some HTML pages put together by the
earliest Web site pioneers or some photo collections represented by links to GIF or JPEG files.
Back then, there was no Google, no Yahoo, and certainly no MSN Search. The only way you
could get to someone’s site was if you either knew the site’s Uniform Resource Locator (URL)
or were referred to it through someone else’s page.

Typing a URL like this:
http://www.somesite.com

into a browser’s navigation window sent your request through a maze of routers, finally
appearing at a server somewhere. The earliest Web servers lived on UNIX boxes. They per-
formed the simple job of loading the HTML file and sending it back to the requestor (perhaps
a browser such as Mosaic).

Introduction

The advent of the Common Gateway Interface (CGI) introduced a standard way to interface
with browsers to produce interactive Web applications. While a Web server that serves up
plain, static HTML documents is useful in certain contexts (for example, a hyperlinked dictio-
nary), more complex applications require a conversation between the user and end server.

That’s where CGI comes in. With the help of HTML tags representing standard GUI controls,
CGI applications can respond to requests dynamically. That is, CGI applications vary their
output depending upon the state within the request and the application, paving the way for
widely interactive applications. For example, a CGI application can examine an incoming
request and determine the user is looking for a certain piece of information (perhaps a prod-
uct code). The CGI application can perform a database lookup for the product and shoot
some HTML that describes the product back to the client.

When it became clear that the Web was an important aspect of information technology,
Microsoft entered the fray by introducing the Internet Services API (ISAPI) and a program to
listen for HTTP requests: Internet Information Services (I1S). While the first UNIX Web serv-
ers started a new process to handle each HTTP new request (in keeping with the classical
UNIX model), that model is very expensive. The Microsoft Web strategy is based on DLLs.
It's much faster to load a DLL to respond to an HTTP request than it is to start a whole
new process.

When programming to the Microsoft platform, IIS listens to port 80 for HTTP requests. IIS
handles some requests directly, while delegating other requests to specific ISAPI extension
DLLs to execute the request. In other cases, IIS will map a file extension to a specific ISAPI
DLL. A number of ISAPI DLLs come preinstalled with Windows. However, 11S is extensible,
and you may map different extensions to any ISAPI DLL—even one you wrote. To make a
Web site work using IIS and ISAPI, developers employ ISAPI DLLs. These DLLs intercept the
request, decompose it, and respond by sending back something to the client (usually

some HTML).

While the TIS/ISAPI platform represents a very flexible and functional way to create Web appli-
cations, it's not without its downside. Specifically, ISAPI DLLs are traditionally written in C++
and are subject to the pitfalls of C++ programming (including such foibles as de-referencing
bad pointers, forgetting to free memory, and traditionally lengthy development cycles). The
other problem with ISAPI DLLs is that it's becoming increasingly more difficult to find C++
programmers. Enter Active Server Pages, or classic ASP.

Classic ASP

In an effort to make Web development more accessible on the Microsoft platform, Microsoft

" introduced Active Server Pages (ASP). The idea behind classic ASP is that a single ISAPI DLL

named ASP.DLL interprets files with the extension ASP (for example, MYSITE.asp). ASP files
include some HTML and perhaps some script code to be executed on the server. The ASP
ISAPI DLL executes the script code as necessary and sends the HTML contained in the ASP

Introduction xvii

file back to the client. The script code usually calls COM objects that do the dirty work (for
example, looking up items in a database and tailoring the output based upon its findings)
while the look and feel of the page is defined by the HTML in the ASP file.

While ASP opened the doors to a whole host of new programmers by catering to a much more
widely used programming language (Visual Basic and VBScript), it wasn’t the silver bullet.
Among the downsides of classic ASP are:

Mixing of user interface code and programming logic
Performance issues due to IDispatch

[]
]
B Inconsistent means of managing state (session state and application state)
[]

An ad-hoc security model

This isn’t an exhaustive list by any means, but it highlights the most important issues with
classic ASP. That's why ASP.NET exists.

ASP.NET 1.0 and 1.1

Microsoft’s .NET framework introduces a whole new way of programming the Microsoft plat-
form. Microsoft developers are primarily concerned with threads and memory (that’s basi-
cally the API programming model). This model carried over to all areas of development,
including Web development, placing a heavy burden upon programmers.

NET is built upon the notion of managed types. Developers writing classic Windows code
(and Web code) wrote classes using C++ or Visual Basic. In many ways, types are similar to the
notion of the C++ class in that types are units of state with functionality attached to them.
However, the similarity ends there. Whereas it was incumbent upon the developer to manage
instances of classes, types are managed completely by the NET runtime services—the Com-
mon Language Runtime (CLR). Because the CLR takes over managing memory and threads,
developers are much more at liberty to concentrate on the actual application (rather than
chasing down errant pointers, memory leaks, and unexplained crashes).

ASP.NET introduces runtime services and a well-engineered class library for greatly enhanc-
ing Web development. In a way, classic ASP was sort of “taped onto” the 11S/ISAPI architec-
ture without any real organic thought as to how early design decisions would affect
developers later on. Well, now it’s later on and classic ASP.NET’s warts have become fairly
obvious.

ASP.NET is built from the ground up to be an extensible, feature-rich way to handle HTTP
requests. ASP.NET leverages IIS in that requests for ASP.NET services are mapped to an ISAPI
DLL. The DLL is named ASPNET_ISAPL.DLL. From there, processing is passed into a worker
process provided by ASPNET (ASPNET_WP.EXE in IIS 5 or W3WP.EXE in IIS 6). The funda-
mental request processing is handled by managed types within the worker process. Control

xviii Introduction

passes between a number of classes plugged into the pipeline—some provided by Microsoft
and/or third parties, and some provided by the developer. What's more, ASP.NET is built from
the ground up to be a comprehensive framework for writing Web applications. All the parts of
the framework execute together to handle requests. By contrast, classic ASP.NET script code
had no structure to it, and code logic within applications tended to be ad hoc.

ASP.NET 1.0 and 1.1 provided a significant number of features, including:

m An object-oriented framework for defining applications

Separation of user interface declarations (HTML) and application logic
Compiled code for executing application logic

Configurable session state management

Built-in data caching

Built-in content caching

A well-defined UI componentization architecture

High-level components for managing data formatting (grids, lists, text boxes)
Built-in program tracing and diagnostics

Built-in user input validation

An easy-to-use custom authentication mechanism

Solid integration with ADO.NET (the .NET database story)

Excellent support for Web Services

Zero reliance on the Component Object Model

An extensible pipeline with many places in which a request can be intercepted

ASPNET 1.0 set the stage for many developers both moving into Web development and mov-
ing to the Microsoft Platform.

ASP.NET 2.0

Which brings us to ASP.NET 2.0. ASP.NET 2.0 builds upon ASP.NET 1.0 and 1.1 by providing
anumber of new features in addition to what already existed with ASP.NET 1.0. These features
include

Master Pages and Skins
Declarative databinding

Provider pattern model

New cache features

Introduction Xix

Membership controls
Personalization controls
Support for Web Parts

Programmable configuration

Administration tools

m New compilation model

All the features of ASPNET 1.0/1.1 are still there. However, these new features make ASP.NET
an even more compelling platform for creating Web sites. We’ll visit all these features as we
tour ASPNET 2.0.

A Word About the .NET Runtime

ASP.NET 2.0 is built upon Microsoft’'s Common Language Runtime. In its earliest days,
programming Windows involved interacting with the operating system at a very intimate
level. For example, getting a Window to show up on a screen took many lines of C code.
In addition, Windows included a rudimentary component technology—raw Dynamic Link
Libraries. Dynamic Link Libraries (DLLs) represent a necessary technology to enable com-
posing systems dynamically—that is, to assemble applications from several disparate binary
components. However, DLLs by themselves are not sufficient for composing systems reli-
ably—primarily because it’s very difficult to manage multiple versions of a component
(aDLL).

During the mid 90’s, the Component Object Model (COM) emerged as a way to help manage
multiple versions of a component. By stipulating strict rules about how clients and compo-
nents may interact, COM represented a technology sufficient for composing applications from
different binary components. However, COM faced a few dead ends which became apparent
as developers began building larger systems.

First, COM relied on humans following rules to get things to interoperate. For example, COM
stipulates a rule that once a programmatic interface is published, it must never change.
Changing a published COM interface after clients begin coding against it will almost certainly
bring a system to its knees. In addition, COM relied on sometimes obtuse rules as far as man-
aging resources. However, the coup de grace for COM was probably the disparate type systems
involved. That is, COM represented many data types differently for three separate classes of
developers: C++ developers, Visual Basic developers, and scripting developers. The different
data type systems made it extremely inconvenient to build systems built from different lan-
guages. It could be done, but developers had to be very wary when making calls across such
component boundaries.

NET and the Common Language Runtime (the CLR) were developed to solve the dead ends
appearing in COM near the end of the last century. When you choose to buy into the .NET

XX Introduction

runtime, it’s like putting your code in a nice hotel room when it runs. For example, the NET
runtime loads and manages your code as it runs. Pure memory leaks are a thing of the past
because the runtime collects garbage when necessary. The problem of overrunning array
boundaries disappears because the .NET runtime keeps careful watch over memory and
knows when anything is out of place. In addition, the NET runtime includes a new security
model making it more difficult to hack into .NET-based software. Finally, the .NET runtime
introduces a new packaging and deployment model, NET Assemblies, which helps enforce
versioning components.

ASP.NET is founded on the NET runtime. As we’ll see in the following chapters, ASPNET runs
completely under the auspices of the CLR. After IIS hands an HTTP request off to ASP.NET, it
runs through the ASP.NET pipeline. The request may be intercepted at various places along the
way, and you have ample opportunity to interrogate the request and modify the response
before it finally leaves the ASPNET runtime. Gone is the COM layer between the HTTP request
processing machinery and a business’s domain objects. Domain objects running under .NET
can be linked into the request processing pipeline for high performance and tight security. In
addition, because all .NET components agree upon the data types being passed between them,
there are no more bizarre data conversions (as there used to be in classic ASP).

In the process of building ASP.NET applications you will be developing .NET assemblies—
most of the time implicitly, but sometimes explicitly. While you’ll be focusing on ASPNET
as a Web application framework, you’ll develop a strong familiarity with the .NET runtime
as well. Very often, the classes you use in an ASP.NET application are the same or very sim-
ilar to those you'd use in a console application, a Windows application, or even a compo-
nent library.

Using This Book

The purpose of this book is to weave the story of ASPNET 2.0 development for you. Each sec-
tion presents a specific ASP.NET feature in a digestible format with examples. The step-wise
instructions should yield working results for you immediately. You'll find most of the main
features within ASP.NET illustrated here with succinct, easily duplicated examples. I made the
examples rich to illustrate the feature without being overbearing. In addition to showing off
ASP.NET features by example, you'll find practical applications of each feature so you can take
these techniques into the real world.

Who Is This Book For?

This book is targeted to several developers:

m Those starting out completely new with ASP.NET The text includes enough back
story to explain the Web development saga even if you've developed only desktop
applications.

Introduction xxi

m Those migrating from either ASP.NET 1.x or even classic ASP The text explains
how ASP.NET 2.0 is different from ASP.NET 1.x. The text also includes references
explaining differences between ASP.NET and classic ASP.

m Those wanting to consume ASP.NET how-to knowledge in digestible pieces Most
chapters stand independently. You don’t have to read the chapters in any particular
order to find the book valuable. Each chapter stands more or less on its own (with the
exception of the first chapter detailing the fundamentals of Web applications—you may
want to read it first if you’ve never ventured beyond desktop application development).
You may find it useful to study the chapters about server-side controls together (Chap-
ters 3,4, and 5), but it’s not completely necessary to do so.

Organization of This Book

This book is organized so that each chapter may be read independently, for the most part.
With the exception of Chapter 1 about Web application essentials and the three server-side
control chapters—Chapters 3, 4, and 5—which make sense to tackle together, each chapter
serves as a self-contained block of information about a particular ASP.NET feature.

Getting Started

If you've gotten this far, you're probably ready to begin writing some code. Before begin-
ning, make sure that Visual Studio 2005 is installed on your machine. As long as you've
installed the development environment, you can be sure the .NET runtime support is
installed as well.

The first few examples will require nothing but a text editor and a working installation of
Internet Information Services. To start, we'll begin with some basic examples to illustrate
ASP.NET’s object-oriented nature and compilation model. In addition to letting you see
exactly how ASP.NET works when handling a request, this is a good time to lay out ASP.NET’s
architecture from a high level. We’ll progress to Web form programming and soon begin using
Visual Studio to write code (which makes things much easier!).

After learning the fundamentals of Web form development, we’ll break apart the rest of
ASP.NET, using examples to understand ASP.NET’s features such as server-side controls, con-
tent caching, writing custom handlers, caching output and data, and debugging and diagnos-
tics, all the way to ASPNET’s support for Web Services.

Finding Your Best Starting Point in This Book

This book is designed to help you build skills in a number of essential areas. You can use
this book whether you are new to Web programming or you are switching from another
Web development platform. Use the following table to find your best starting point in
this book.

Introduction

If you are Follow these steps

New

To Web 1. Install the code samples.

development 5 \work through the examples in Chapters 1 and 2 sequentially. They will

ground you in the ways of Web development. They will also familiarize you
with ASP.NET and Visual Studio.

3. Complete the rest of the book as your requirements dictate.
New
To ASP.NET and 1. Install the code samples.
Visual Studio 2. Work through the examples in Chapter 2. They provide a foundation for
working with ASP.NET and Visual Studio.

3. Complete the rest of the book as your requirements dictate.

Migrating

From ASP.NET 1. Install the code samples.

Lx il from 2. Skim the first two chapters to get an overview of Web development on the
classic ASP Microsoft platform and Visual Studio 2005.

3. Concentrate on Chapters 3 through 20 as necessary. You may already be fa-
miliar with some topics and may only need to see how a particular feature dif-
fers between ASP.NET 1.x and ASP.NET 2.0. In other cases, you may need to
explore a feature that's completely new for ASP.NET 2.0.

Referencing
The book after 1. Use the Index or the Table of Contents to find information about particular
working through subjects.

the exercises

. Read the Quick Reference sections at the end of each chapter to find a brief

review of the syntax and techniques presented in the chapter.

Conventions and Features in This Book

Conventions

This book presents information using conventions designed to make the information read-

able and easy to follow. Before you start the book, read the following list, which explains con-
ventions you'll see throughout the book and points out helpful features in the book that you
might want to use.

Each chapter includes a summary of objectives near the beginning.

Each exercise is a series of tasks. Each task is presented as a series of steps to be followed

sequentially. -

m Notes labeled “Tip” provide additional information or alternative methods for complet-
ing a step successfully.

Introduction xxiii

m Text that you type appears in bold, like so:

class foo

{ -
System.Console.writeLine("Hellowor1d");
}

m The directions often include alternate ways of accomplishing a single result. For exam-

ple, adding a new item to a Visual Studio project may be done from either the main
menu, or by right mouse clicking in the Solution Explorer.

®m Most of the examples in this book are written using C#. However a few chapters have
examples in both C# and Visual Basic so you may see how the same programming idi-
oms are expressed in different languages.

Other Features

m Some text includes sidebars and notes to provide more in-depth information about the
particular topic. The sidebars might contain background information, design tips, or
features related to the information being discussed. They may also inform you about
how a particular feature may differ in this version of ASPNET.

m Each chapter ends with a Conclusion and a Quick Reference section. The Quick Refer-
ence section contains concise reminders of how to perform the tasks you learned in the
chapter.

System Requirements

You'll need the following hardware and software to complete the practice exercises in this
book:

Note The Visual Studio 2005 software is not included with this book! The CD-ROM pack-
aged in the back of this book contains the codes samples needed to complete the exercises.
The Visual Studio 2005 software must be purchased separately.

B Microsoft Windows XP Professional with Service Pack 2, Microsoft Windows Server
2003 with Service Pack 1, or Microsoft Windows 2000 with Service Pack 4

Microsoft Internet Information Services (IIS) (included with Windows)

Microsoft Visual Studio 2005 Standard Edition or Microsoft Visual Studio 2005 Profes-
sional Edition '

B Microsoft SQL Server 2005 Express Edition (included with Visual Studio 2005) or
Microsoft SQL Server 2005

® 600 MHz Pentium or compatible processor (1 GHz Pentium recommended)

xxiv Introduction

192 MB RAM (256 MB or more recommended)

m Video (800 x 600 or higher resolution) monitor with at least 256 colors (1024 x 768
High Color 16-bit recommended)

CD-ROM or DVD-ROM drive
Microsoft Mouse or compatible pointing device’

You will also need to have Administrator access to your computer to configure SQL Server
2005 Express Edition.

Using Microsoft Access

Chapter 13 on databinding and Chapter 14 on application data caching both use Microsoft
Access. If you want to look at the databases and modify them, you need to have installed
Microsoft Access on your machine. If you have Microsoft Office, you probably already have it.
There is nothing special you need to do to set it up, and there is nothing special you need to
do to use the databases within the ASP.NET applications.

Introduction

Code Samples

The companion CD inside this book contains the code samples, written in C#, that you'll use
as you perform the exercises in the book. By using the code samples, you won’t waste time cre-
ating files that aren’t relevant to the exercise. The files and the step-by-step instructions in the
lessons also let you learn by doing, which is an easy and effective way to acquire and remem-

ber new skills.

for more information.

Note |If you prefer to use code samples written in Visual Basic, you can download a Visual
Basic version of the code samples. See the "Installing the Visual Basic Code Samples" section

Installing the C# Code Samples

Follow these steps to install the C# code samples on your computer so that you can use them

with the exercises in this book.

your computer to install the code samples.

Note The code sample installer modifies IIS, so you must have Administrator permissions on

1. Remove the companion CD from the package inside this book and insert it into your

CD-ROM drive.

appear, open My Computer on the desktop or Start menu, double-click the icon for your
CD-ROM drive, and then double-click StartCD.exe.

Note Anend user license agreement should open automatically. If this agreement does not

2. Review the end user license agreement. If you accept the terms, select the accept option

and then click Next.
A menu will appear with options related to the book.
3. Click Install Code Samples.

4. Follow the instructions that appear.

however, the code samples that require IIS will not run properly.

Note |If lIS is not installed and running, a message will appear indicating that the installer
cannot connect to IIS. You can choose to ignore the message and install the code sample files,

xXxvi

Introduction

The code samples will be installed to the following location on your computer:
C:\Microsoft Press\ASP.NET 2.0 Step by Step\

The installer will create a virtual directory named aspnet2sbs under the Default Web
Site. Below the aspnet2sbs virtual directory, various Web applications are created.
To view these settings, open the Internet Information Services console.

Installing the Visual Basic Code Samples

Follow these steps to download and install the Visual Basic code samples on your computer
so that you use them with the exercises in this book.

Note The code sample installer modifies IIS, so you must have Administrator permissions on
your computer to install the code samples.

1. Download the Visual Basic code samples installer from the book's online companion
content page:
http://www.microsoft.com/mspress/companion/0-7356-2201-9/

2. Run the installer.

Follow the instructions that appear.

Note If IS is not installed and running, a message will appear indicating that the installer
can not connect to IIS. You can choose to ignore the message and install the code sample files,
however, the code samples that require IS will not run properly.

The code samples will be installed to the following location on your computer:
C:\Microsoft Press\ASP.NET 2.0 Step by Step\

The installer will create a virtual directory named aspnet2sbs under the Default Web Site.
Below the aspnet2sbs virtual directory, various Web applications are created. To view these
settings, open the Internet Information Services console.

Using the Code Samples

Each chapter in this book explains when and how to use any code samples for that chapter.
When it’s time to use a code sample, the book will list the instructions for how to open the
files. Many chapters begin projects completely from scratch so you can grok the whole devel-
opment process. Some examples borrow bits of code from previous examples.

Introduction Xxvii

Here’s a comprehensive list of the code sample projects.

Project

Description

Chapter 1

HelloWorld.asp, Selectnoform.asp,
Selectfeature.htm, Selectfeature2.htm,
Selectfeature.asp

Several Web resources illustrating different examples of
raw HTTP requests.

WebRequestor

A simple application that issues a raw HTTP Request.

Chapter 2

HelloWorld, HelloWorld2, HelloWorld3,
HelloWorld4, HelloWorld5, partiall.cs,
partial2.cs

Web resources illustrating ASP.NET's compilation
models and partial classes.

Chapter 3

BunchOfControls.htm, BunchOf-
Controls.asp, BunchOfControls.aspx

Web resources illustrating rendering control tags.

ControlORama

Visual Studio-based project illustrating Visual Studio
and server-side controls.

Chapter 4

ControlORama

lllustrates creating and using rendered server-side con-
trols.

Chapter 5

ControlORama

lllustrates creating and using composite server-side
controls and User controls.

Chapter 6

ControlPotpourri

Illustrates control validation, the TreeView, and the
MultiView / View controls.

Chapter 7

UseWebParts lllustrates using Web Parts within a Web application.

Chapter 8 -

MasterPageSite lllustrates developing a common look and feel through-
out multiple pages within a single Web application
using Master Pages, Themes, and Skins.

Chapter 9

ConfigORama lllustrates configuration within ASP.NET. Shows how to
manage the Web.Config file, how to add new
configuration elements and how to retrieve those
configuration elements.

Chapter 10

SecureSite lllustrates Forms Authentication and authorization

Login.aspx, OptionalLogin.aspx,
Web.Config, Web.ConfigForceAuthenti-
cation, Web.ConfigForOptionalLogin

within a Web site.

Web resources for illustrating Forms Authentication at
the very barest level.

