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Preface

In this presentation of the Galois correspondence, modern theories of
groups and fields are used to study problems, some of which date back to
the ancient Greeks. The techniques used to solve these problems, rather
than the solutions themselves, are of primary importance.

The ancient Greeks were concerned with constructibility problems. For
example, they tried to determine if it was possible, using straightedge and
compass alone, to perform any of the following tasks?

(1) Double an arbitrary cube; in particular, construct a cube with
volume twice that of the unit cube.

(2) Trisect an arbitrary angle.

(3) Square an arbitrary circle; in particular, construct a square with
area .

(4) Construct a regular polygon with n sides for n > 2.

If we define a real number ¢ to be constructible if, and only if, the point
(c,0) can be constructed starting with the points (0,0) and (1,0), then we
may show that the set of constructible numbers is a subfield of the field R
of real numbers containing the field Q of rational numbers. Such a subfield
is called an intermediate field of R over Q. We may thus gain insight into
the constructibility problems by studying intermediate fields of R over Q.
In chapter 4 we will show that (1) through (3) are not possible and we
will determine necessary and sufficient conditions that the integer n must
satisfy in order that a regular polygon with n sides be constructible.

Another problem of interest to mathematicians was the possibility of
finding solutions of polynomial equations which use only rational opera-
tions and the extraction of roots. The student is no doubt familiar with
the quadratic formula which gives the solutions to the general quadratic
equation and was discovered by the Moslems around 900 A.D. The solu-
tions to the general cubic were discovered by Tartaglia and Cardan in the
mid 16th century and the general quartic equation was solved by Ferrari,
also in the mid 16th century. The solution to the general fifth degree equa-
tion continued to elude mathematicians however, and it wasn’t until 1828
that Abel, who died at the age of 27, produced a proof of the unsolvability
of the general quintic.

Evariste Galois, who died in 1832 at the age of 21, in what some histo-
rians believe to be a politically motivated duel, determined necessary and
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sufficient conditions that a polynomial equation be solvable by radicals. His
unique approach led to the development of the modern theory of groups and
fields. Galois died before achieving recognition and his work was not pub-
lished until 14 years after his death. It is interesting to note that one of
his teachers wrote the following about Galois: “Erratic, talkative. I be-
lieve that his ambition is to wear me out. He would be very bad for his
classmates if he had any influence on them”(cf. reference [9], page 64).

The student should understand the difficulty of dealing with the types of
questions just presented. How does one show that a solution cannot exist?
This is quite different than just saying that one cannot find a solution!
The Galois correspondence defines, for each field extension F over K, a
related group, called the Galois group of F over K. One then studies field
extensions by studying the related Galois group. It will be shown that a
polynomial equation is solvable by radicals if, and only if, the Galois group
of a certain related field extension is a solvable group. We will then be able
to produce polynomials with Galois groups which are not solvable, and
thereby produce polynomial equations which are not solvable by radicals.

In a similar manner, we will use our knowledge of group theory to classify
those integers n such that a regular polygon with n sides is constructible.
We use the Galois correspondence to replace field extensions, which are
often infinite, with their related Galois group, which is often finite. We
then study the groups and use this information, together with the Galois
correspondence, to make conclusions about the field extensions.

It is my hope that the interested student who works through the prob-
lems and studies the applications presented in this book will come to un-
derstand and appreciate both the power and the elegance of the Galois
correspondence in mathematics.

To The Instructor

The theory of the Galois correspondence is perhaps one of the most ele-
gant areas of mathematics. It can be presented to students of mathematics
fairly early in their studies. One needs only a grasp of the elementary
theory of groups, rings and vector spaces to begin.

It is one of the few areas of mathematics where major problems can be
stated at the beginning of the course without first having to introduce new
definitions and concepts. The students then have a goal in mind and an
interest in the development.

Although it is recommended that the student have had a course in el-
ementary abstract algebra, this book is self-contained. It is assumed only
that the student has achieved a certain level of mathematical sophistica-
tion and is familiar with some elementary linear algebra (in particular, the
concepts of vector spaces, bases and dimension).

The first chapter presents, in compact form, the necessary background in
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groups and rings. The examples in this chapter are somewhat sparse and
we concentrate on those examples which will be needed later. For most
students, much of the material in this chapter will provide the necessary
review of topics already studied and only those topics not previously covered
need be studied in detail.

The intention in this chapter is to emphasize the procedure one uses
to study algebraic structures. In groups, we study normal subgroups and
quotient groups and we often try to ascertain information about a group G
given information about a normal subgroup N of G and the quotient group
G/N. This is the method we will use to analyze Galois groups.

I have resisted the temptation to treat topics in a more general setting
in this chapter; my goal is to provide a firm foundation for the study of
the Galois correspondence. For example, we prove that if a prime p divides
the order of a group G, then G contains a Sylow p-subgroup, but we do
not discuss how many such subgroups may exist. Similarly, we discuss the
decomposition of finite, abelian groups, rather than give the more general
theorem on finitely generated abelian groups. We present the necessary
theorems concerning polynomial rings over fields, without spending time
discussing the more general concept of Euclidean domains and unique fac-
torization domains. My experience has been that it is sometimes difficult
to gather the necessary information from these more general theorems and
still have time to adequately cover the Galois correspondence. We thus
advance as needed on a straight and narrow path to the topic of interest.

This second edition includes appendices which provide more in-depth
coverage of of some of the theory of groups and rings. Although the first
chapter is presented independently of these appendices, the instructor might
choose to include these topics at the appropriate time.

In Appendix A the concepts of group actions, orbits, stabilizers and
fixed points are introduced and a generalization of the class equation is
given. Various group action results are then used to prove the three Sylow
theorems. A new section on free groups, generators and relations has been
added to formalize the development of groups like the dihedral groups which
are defined via generators and relations.

An appendix on factoring in integral domains had been added to gener-
alize the concept of factoring in polynomial rings over fields. The instructor
might wish to include this material after the presentation of polynomials
rings given in section 5 of the first chapter.

We have also added an appendix on vector spaces covering the concepts
of linearly independent and spanning sets, bases and dimension. This ap-
pendix provides a concise review of the vector space theory needed for our
study of the Galois correspondence.

In the chapters on field extensions and the Galois corresondence, many
examples have been provided. Most of the examples include exercises which
involve verifying related facts. I feel that this is a good way for the student
to test his or her understanding of the example and such a test should not
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wait until the end of the section. The exercises presented at the end of
the sections are more general and of varying degrees of difficulty. Many of
these exercises include hints to get the student started.

Whenever possible, illustrations have been included as an aid to visual-
izing the Galois correspondence, and critical equations and isomorphisms
have been displayed (rather than hidden within a paragraph).

The presentation of Galois theory concludes in chapter 4 with the dis-
cussion of some of the diverse applications of the Galois correspondence.
These applications illustrate how the Galois correspondence might be used
to study the related Galois group of a field extension and thus produce
information concerning the field extension itself.

A preliminary version of this text has been class-tested at Mankato State
University. The students had previously had the equivalence of a one se-
mester course in elementary abstract algebra. We were able to cover, in a
one quarter course, the material in the first chapter on Sylow subgroups,
finite abelian groups and solvable groups, all of the second and third chap-
ters, and the first section of the fourth chapter. The development led from
solvable groups to solvable polynomials and concluded with the study of
the use of the Galois correspondence in solving the classical constructibility
problems.

It should be possible to cover the entire text in a one semester course
(provided the students have had an elementary abstract algebra course),
including whatever material may be necessary from the first chapter and
any desirable topics from the appendices.

Paths through the Second Edition

Option One: For those who wish to get to the Galois correspondence
as quickly as possible, the first chapter covers, in very compact form, the
necessary background in groups and rings. The students will probably have
seen much of this theory and will receive the necessary review by reading
this material and doing some of the exercises. Appendix C has been added
for those who need a quick review of the necessary vector space theory.

Option Two: For a more in-depth course, it is suggested that Appen-
dices A and B also be included.

In order to cover the first section of Appendix A on group actions and
the Sylow theorems, the student should be familiar with the material from
the first two sections of chapter 1 through Cauchy’s Theorem for Abelian
Groups. The instructor could cover through [2.23] in chapter 1 and include
any of the exercises in section 2 except [2.20], [2.23] and [2.25]. A much
more in-depth coverage of the Sylow theorems using group actions can then
be presented using the first section of Appendix A.

The second section of Appendix A on free groups, generators and rela-
tions is quite independent of the first section and may be covered at the



instructor’s discretion.

Appendix B on factoring in integral domains covers such concepts as
Euclidean domains, principal ideal domains and unique factorization do-
mains. It is suggested that this be included after covering all of section 5 in
the first chapter. The student will then have the quite concrete example of
polynomial rings over fields before approaching the more general concepts
presented in Appendix B.

Finally, the student might be referred to Appendix C for the necessary
review of vector spaces over fields at the beginning of chapter 2.
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Chapter I

Preliminaries — Groups and Rings

In this chapter we present the background required in the study of the
Galois correspondence. We give the basic definitions and theorems of the
elementary theory of groups and rings, concentrating on examples that will
be used in later chapters. Although some of the more straightforward proofs
are left as exercises, the majority of the proofs in the first two sections are
presented fully as we guide the student through the process of studying
groups via their normal subgroups and quotient groups.

We conclude the second section with the proof of the existence of a
Sylow p-subgroup in a general group whose order is a multiple of the prime
p- This theorem is not only important in its own right, but provides a nice
illustration of the technique of using normal subgroups and quotient groups
in inductive arguments involving finite groups.

In Section 3, we show that finite, abelian groups can be completely
classified as direct products of cyclic groups. A group G is then said to
be a solvable group if there is a finite chain of subgroups from {e} to G
such that each subgroup is normal in the next, and each resulting quotient
group is abelian. If G is a finite, solvable group, then each of these quotient
groups is a direct product of cyclic groups. We also show that, if N is
a normal subgroup of a group G, and the groups N and G/N are both
solvable, then the group G is also solvable. This fact will prove to be very
useful in inductive arguments in Chapter 4.

In the fourth section we study rings via their ideals and quotient rings.
We define integral domain and field and determine, in commutative rings
with identity, which types of ideals produce quotient rings which are integral
domains or fields. We conclude Section 4 with the construction of the field
of fractions from an integral domain (a procedure which is similar to the
construction of the field of rational numbers from the ring of integers).

In the last section of Chapter 1, we study polynomial rings F(z] where
F is a field. In particular, we discuss methods for determining whether a
given polynomial is irreducible over the field in question.
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1. INTRODUCTION TO GROUPS

Definition [1.1]. A group (G, *) is a nonempty set G, together with a
binary operation * on G which satisfies the following properties.
(1) Associativity: For all z,y,2 € G, (z*y) *z2 =z * (y * 2).
(2) Existence of identity: There is an element e € G such that ex z =
z=zx*eforallz €.
(8) Existence of inverses: For each z € G, there is an element y € G
such that z«y=e=y*z.

If (G, #) is a group, we will often suppress the symbol * for the binary
operation and write zy instead of z + y. In this case, we speak simply of
the group G rather than (G, *).

Theorem [1.2]. Let G be a group. Then G satisfies the following asser-
tions.
(1) The identity of G is unique.
(2) Every element z € G has a unique inverse (we generally denote the
inverse of z by z71).
(3) Ifz,y € G, then (zy)"! =y~ 'z~ 1.

Proof. The proof is left to the reader. (See Exercise [1.1].) Q.E.D.

If G is a group and = € G, we define z° = ¢, and if n € N, z" is defined
inductively by z™ = zz"~!. We also define z~™ = (z~!)". It may be shown
that (z")™ =z™" = (z™)" forallz € G and n,m € Z.

If G is a finite group with n elements, we say that G is a group of order
n and we write 0(G) = n.

A group (G, *) is said to be an abelian group if, and only if,

zxy=yx*zforalz,yeCG.

If G is abelian, we will often use the additive notation z + y for the group
operation. We then call G an additive group. In this case, we use the
symbol O for the identity, —z for the inverse of z, and nz in place of z".

Examples [1.3].

[1.3.1] We will use the symbols Z, Q, R and C for the set of integers,
rationals, reals, or complex numbers respectively. Each of these sets forms
an infinite abelian group under addition.

If we denote the set of nonzero rationals, reals, complex numbers respec-
tively by Q*, R*, C* respectively, then each of these sets is an infinite
abelian group under multiplication.

[1.3.2] The group Z,: If n € N we define a relation =,, on the set Z
by
a =, bif and only if n dividesa — b.
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We will sometimes use the notation a = b (mod n) instead of a =, b.

If a =, b, we say that a is congruent to b modulo n. The relation =, is
an equivalence relation on the set Z.

If a € Z, we denote the equivalence class of a under the relation =, by
a. The n distinct equivalence classes 0,71,.. .,rr:l then partition the set
Z. Let -

Z, = {6,T,...,n-—l}.

It may be verified that, if a,b,c,d € Z and a =, c and b =, d, then
a+ b=, c+d. Thus, if we define + on Z, by

—

a+b=a+b,

then + is independent of the choice of representatives for the equivalence
classes, and hence is a well-defined binary operation on the set Z,,. It may
be verified that (Z,,+) is an abelian group of order n.

Ezercises.

(a) Prove that =, is an equivalence relation on Z.

(b) Use the division algorithm on Z to prove that, for every m € Z,
there is a unique r € Z with 0 < r < n such that m =, r.

(c) Prove that, if a,b,c,d € Z and a =, c and b =, d, thena + b =,
c+ d. Explain why this implies that + is a well-defined operation
on the set Z,.

[1.3.3] The group Z)X: As in the preceding example, if a,b,c,d € Z
and a =, c and b =, d, then it may be shown that ab =, cd. Hence if we
define multiplication on Z, by

@b = ab,
then multiplication is a well-defined binary operation on Z,,. The element
1 is an identity for multiplication on Z,. We define

Z) ={a€ Z,:gcd(a,n)=1}.

Recall the following property of the set of integers: (*) if a € Z, then a
and n are relatively prime if, and only if, there are integers z and y such
that az + ny = 1.

It may then be verified that, if a =, b, then gcd (a,n) = 1 if, and only
if, gcd (b,n) = 1, so that the definition of the set ZY is independent of the
particular representative chosen from the equivalence class.

If @ € Z), then, by (#), since a and n are relatively prime, there are
integers = and y such that az + ny = 1. But then, again by (*), z is also
relatively prime to n (so that £ € ZX) and az =, 1. Thus @Z =1 and 7 is
an inverse for a@.
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In a similar manner one may show that, if 8,3 € ZX, then ab is also an
element of ZY. Then ZY is a group under multiplication and elements of
Z) are precisely those elements of Z,, which have multiplicative inverses.

The order of the group ZX is ¢(n) where ¢ is the Euler function defined
on N by

¢(n) = card {m € N : m < n and gcd(m,n) = 1}.

Ezercises.

(a) Prove that multiplication is a well-defined operation on the set Z,,.
(b) Prove that (ZX,-) is a group.

(c) Write out a multiplication table for the group Z5.

(d) Prove that, for any prime p and k € N, ¢(p*) = p*~1(p - 1).

[1.3.4] The group Sp: If n € N, let I, = {1,2,...,n} and let S,
denote the set of bijections from I, to itself. The elements of S,, are called
permutations. For example,

_ (1 2 3 4
*=\3 41 2
denotes the element of Sy defined by a(1) = 3, a(2) = 4, a(3) = 1 and
a(4) =2.

Sp is a group of order n! under composition of functions. Recall that
composition of functions is read from right to left and thus, if a and 3 are
elements of S, for some n, af is the permutation of I, whose action is
determined by first applying 8 and then applying a.

If A= {ay,az,...,am} C I,, we write

a=(a1 a2 ... am)

for the element of S, defined by a(a;) = a;+1 for 1 <i < m, a(an) = a1
and a fixes all elements of I, which are not in A. An element of this type is
called an m-cycle and is said to have length m. The identity permutation
is said to be a cycle of length 0. It may be shown that every element of S,
can be written as a product of disjoint cycles. For example, if

123456
°=(2 453 6)‘55"

then a(l) = 2, and a(2) = 1, producing the cycle (1 2), and a(3) = 4,
a(4) =5 and a(5) = 3, producing the cycle (3 4 5). Since a fixes 6 we
see that

-

a=(1 2)(3 4 5).
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A 2-cycle is called a transposition. f a=(a; a2 ... am), then

a=(am am-1)(@m am-2)...(am a1)

and it follows that every element of S, can be written as a product of
transpositions.

Ezercises.

(a) Prove that every nontrivial element of S, can be written as a
product of disjoint cycles with the cycles appearing in the prod-
uct unique.

(b) Prove that, if a and g are disjoint cycles in S,, then af = fa.

(c) Give an example to show that cycles which are not disjoint do not
generally commute.

(d) Write every element of S3 as a product of transpositions.

[1.3.5] If (G, *) and (G', ) are groups, then the cross product G x G’
is a group (called the direct product of G and G’) under the operation

(a,a") (b,0') = (a*b, o' xb) (for a,b € G,ad',b' € G').

If G and G’ are finite groups of order n and m respectively, then G x G’ is
a finite group of order nm.

Definition [1.4]. Let (G, *) be a group. A subset H of G is a subgroup
of G if, and only if, (H, *) is also a group (that is, H is a group using the
same operation as that of G).

The group G itself and the trivial subgroup {e} are always subgroups of
a given group G. Any subgroup other than {e} is referred to as a nontrivial
subgroup of G.

The reader should verify that, if H is a subgroup of G, then the identity
of H is the same as the identity of G. The following propositions are useful
in identifying subgroups of a given group.

Proposition [1.5]). Let G be a group and H a nonempty subset of G. Then
H is a subgroup of G if, and only if, the following two closure conditions
are satisfied.

(1) Ifz,y € H, thenzy € H.
(2) Ifz € H,thenz™! € H.

Moreover, if H is finite, then (1) suffices.

Proof. If H is a subgroup of G, then the binary operation on G restricts
to a binary operation on H and hence H is closed under products. Since
the identity of H is the same as the identity of G, and every element of H
contains an inverse in H, H is closed under inverses.
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Now suppose that H is a nonempty subset of G satisfying (1) and (2).
Then, by (1), the associative binary operation on G restricts to an associa-
tive binary operation on H and every element in H has an inverse in H.
Since H # @, there is an element z € H. By (2), z~! € H and hence, by
(1), zz~! € H. Hence e € H and the result follows.

The proof of the final assertion is outlined in exercise [1.3]. Q.E.D.

Often the following proposition is a more efficient means of determining
whether a given nonempty subset of a group is a subgroup.

Proposition [1.6]. Let H be a nonempty subset of a group G. Then H
is a subgroup of G if, and only if, whenever z,y € H, then zy~! € H.

Proof. The proof is left to the reader - cf. Exercise [1.2]. Q.E.D.

Example. Let G be a group and z € G. The reader should verify that the
following sets are subgroups of G (cf. Exercise [1.5]).
(1) Z(G) = {y € G : yz = zy for all z € G}, called the center of the
group G. Note that G is abelian if, and only if, Z(G) = G.
2 Cz)={yeG:yz=zy} = {y € G : yzy~! = z}, called the
centralizer of z in G.

Definition [1.7]. Let X be a subset of a group G. The subgroup generated
by X is the set (X) defined by

(X)=n {H : H is a subgroup of G containing X} .

The reader should verify that (X) is a subgroup of G containing X and
that, if K is any other subgroup of G containing X, then (X) C K. The
following proposition gives a more concrete description of (X).

Proposition [1.8]). Let X be a subset of a group G. Then (X) consists of
all finite products of the form

ky _ka

Z), Zy ...z:ﬂ

wheren € N and, for each 1 <1< n, z; € X and k; = £1. Moreover, if
G is finite, then we may take k; = 1 for each i. (We interpret a product of
length 0 as e so that (8) = {e}).
Proof. Let S be the set of all finite products of the given form. Each of the
following facts may be verified.
(i) XCSs.

(ii) S is a subgroup of G.

(iii) If H is a subgroup of G containing X, then S C H.
See Exercise [1.6]. Q.E.D.

Remark. If X consists of a single element z € G, we write (z) instead of
({z}). Thus
(z)={z":n€e 2}



1. INTRODUCTION TO GROUPS 7
and, if G is finite, then
(z) = {z" : n € N}.

Recall that, if G is an additive group, then we write nz instead of z" as
above.

If G = (z), we say that G is a cyclic group with generator z. If (z) has
finite order n, we say that the element z has order n and write o(z) = n.
Otherwise, we write o (z) = co. The following proposition shows that, if z
has finite order n, then n is the smallest positive power of z giving e.

Proposition [1.9]. Let G be a group, = € G and suppose that z has finite
order n. Then the following assertions hold.

(1) (z) = {e,z,z2,... 2" '} with these elements all distinct and z" =
e

(2) If m € Z, then ™ = e if, and only if, n|m. Hence, in particular,
n is the smallest positive power of T giving e.
(3) Ifk € N, then o(z*) = n/gcd (k,n).

Proof. (1) Since (z) is finite, and for all k € N, z* € (z), there must be
j < k € N such that z7 = z*. Then z*~7 = e and hence there is a positive
integer power of z producing e. Let k be the smallest element of IV such
that z* = e. Then, by the division algorithm, if m € Z, there are q,r € N
such that m =gk +r and 0 < r < m. Then

™ = Ikt — (zk)qzr =z

and hence
k—l}.

(z) C {e,z,2%,...
Ifzy =z'with0<j<l<k-1then0<!-j < kand 7 =
e, contradicting the minimality of k. Hence the elements in the above
mentioned set are distinct. Now, since (z) has n elements, we see that, in
fact k = n and thus n is the smallest positive integer power of z producing
e.
(2) As above,if me Z,and m=qn+r withgq,r€ Zand 0 <r < n,
then
™=z = (z") 2" =21".

Since 0 < r < n, the minimality of n gives us that z™ = e if, and only if,
r = 0; that is, if and only if n|m.

(8) We consider three cases.

Case (i): Suppose that k|n. Then n = kr for some r € N. We must
show that o (z*) = r. Let o(z*) = m. Since (z*)" = z" = ¢, and o(z*) =
m, m < r. If m < r, then we would have z*™ = e with km < kr = n,
contradicting o (z) = n.



