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Part 1

Probability Theory






1

Random Variables and Their Distributions

1.1 Spaces of Elementary Outcomes, o-Algebras,
and Measures

The first object encountered in probability theory is the space of elementary
outcomes. It is simply a non-empty set, usually denoted by {2, whose elements
w € {2 are called elementary outcomes. Here are several simple examples.

Example. Take a finite set X = {z!,...,2"} and the set {2 consisting of se-
quences w = (wy, ...,wy) of length n > 1, where w; € X foreach1<i<n.In
applications, w is a result of n statistical experiments, while w; is the result of
the i-th experiment. It is clear that |£2| = r™, where |{2| denotes the number
of elements in the finite set 2. If X = {0,1}, then each w is a sequence of
length n made of zeros and ones. Such a space {2 can be used to model the
result of n consecutive tosses of a coin. If X = {1,2,3,4,5,6}, then 2 can be
viewed as the space of outcomes for n rolls of a die.

Example. A generalization of the previous example can be obtained as fol-
lows. Let X be a finite or countable set, and I be a finite set. Then 2 = X/
is the space of all functions from I to X.

If X = {0,1} and I C Z9 is a finite set, then each w € 2 is a configuration
of zeros and ones on a bounded subset of d-dimensional lattice. Such spaces
appear in statistical physics, percolation theory, etc.

Example. Consider a lottery game where one tries to guess n distinct num-
bers and the order in which they will appear out of a pool of r numbers (with
n < 7). In order to model this game, define X = {1,...,r}. Let §2 consist of
sequences w = (wy,...,wn) of length n such that w; € X,w; # w; for i # j,
and X = {1,...,r}. It is easy to show that |2 = r!/(r — n)!.

Later in this section we shall define the notion of a probability measure, or
simply probability. It is a function which ascribes real numbers between zero
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and one to certain (but not necessarily all!) subsets A C 2. If {2 is interpreted
as the space of possible outcomes of an experiment, then the probability of
A may be interpreted as the likelihood that the outcome of the experiment
belongs to A. Before we introduce the notion of probability we need to discuss
the classes of sets on which it will be defined.

Definition 1.1. A collection G of subsets of £2 is called an algebra if it has
the following three properties.

1.2€g.
2. C € G implies that 2\C € G.
3. Ch,...,Cyn, € G implies that |J;_, C; € G.

Example. Given a set of elementary outcomes (2, let G contain two elements:
the empty set and the entire set §2, that is G = {0, {2}. Define G as the
collection of all the subsets of (2. It is clear that both G and G satisfy the
definition of an algebra. Let us show that if 2 is finite, then the algebra G
contains 2! elements.

Take any C C {2 and introduce the function x¢(w) on £2:

1 ifweC,
0 otherwise,

xc(w) = {

which is called the indicator of C. It is clear that any function on {2 taking
values zero and one is an indicator function of some set and determines this
set uniquely. Namely, the set consists of those w, where the function is equal to
one. The number of distinct functions from (2 to the set {0, 1} is equal to 2/9I.

Lemma 1.2. Let 2 be a space of elementary outcomes, and G be an algebra.
Then

1. The empty set is an element of G.
2.IfCy,..,.Ch €G, thenN;_, C; €G.
3. If C1,Cr € G, then C1 \ C2 € G.

Proof. Take C = §2 € G and apply the second property of Definition 1.1 to
obtain that @ € G. To prove the second statement, we note that

n

A=) eg.

i=1 i=1
Consequently, (;_; C; € G. For the third statement, we write

Ci\Co=02\((2\C1)UCy) €g.



1.1 Spaces of Elementary Outcomes, o-Algebras, and Measures 5

Lemma 1.3. If an algebra G is finite, then there exist non-empty sets
By, ..., B, € G such that

1.BiNB; =0 ifi#3j.

2.2=2, Ba.

3. For any set C € G there is a set I C {1,...,m} such that C = | J;¢; B;
(with the convention that C =0 if I =0 ).

Remark 1.4. The collection of sets B;,i = 1,...,m, defines a partition of 2.
Thus, finite algebras are generated by finite partitions.

Remark 1.5. Any finite algebra G has 2™ elements for some integer m € N.
Indeed, by Lemma 1.3, there is a one-to-one correspondence between G and
the collection of subsets of the set {1,...,m}.

Proof of Lemma 1.8. Let us number all the elements of G in an arbitrary way:
G ={Ci,..,Cy}.
For any set C € G, let
c'=cC, Cl'=0\C.

Consider a sequence b = (b, ..., bs) such that each b; is either +1 or —1 and
set
8
Bb=()Ck.
i=1

From the definition of an algebra and Lemma 1.2 it follows that B® € G.
Furthermore, since
c¢i=|J B
b

:bi=1
any element C; of G can be obtained as a union of some of the B®. If b’ # b,
then BY N BY" = . Indeed, ' # b” means that b, # b;” for some i, say
b’ =1,b;" = —1. In the expression for B we find C! = C;, so BY C C;. In
the expression for BY" we find o 1= 2\C;, so BY C £2\C;. Therefore, all B
are pair-wise disjoint. We can now take as B; those B which are not empty. O

Definition 1.6. A collection F of subsets of §2 is called a o-algebra if F is an
algebra which is closed under countable unions, that is C; € F, i > 1, implies
that Uzl C; € F. The elements of F are called measurable sets, or events.

As above, the simplest examples of a o-algebra are the trivial o-algebra, F =
{0, 2}, and the o-algebra F which consists of all the subsets of £2.

Definition 1.7. A measurable space is a pair (2, F), where 2 is a space of
elementary outcomes and F 1is a o-algebra of subsets of (2.



6 1 Random Variables and Their Distributions

Remark 1.8. A space of elementary outcomes is said to be discrete if it has a
finite or countable number of elements. Whenever we consider a measurable
space (2, F) with a discrete space §2, we shall assume that F consists of all
the subsets of (2.

The following lemma can be proved in the same way as Lemma 1.2.

Lemma 1.9. Let (£2,F) be a measurable space. If C; € F, i > 1, then
nz?:l C;,eF.

It may seem that there is little difference between the concepts of an
algebra and a o-algebra. However, such an appearance is deceptive. As we
shall see, any interesting theory (such as measure theory or probability theory)
requires the notion of a o-algebra.

Definition 1.10. Let (£2, F) be a measurable space. A function & : 2 — R is
said to be F-measurable (or simply measurable) if {w : a < {(w) < b} € F for
each a,b € R.

Below we shall see that linear combinations and products of measurable func-
tions are again measurable functions. If 2 is discrete, then any real-valued
function on {2 is a measurable, since F contains all the subsets of 2.

In order to understand the concept of measurability better, consider the
case where F is finite. Lemma 1.3 implies that F corresponds to a finite
partition of 2 into subsets By, ..., By, and each C € F is a union of some of
the B,‘.

Theorem 1.11. If £ is F-measurable, then it takes a constant value on each
element of the partition B;, 1 <i < m.

Proof. Suppose that £ takes at least two values, a and b, with a < b on the
set B; for some 1 < j < m. The set {w: a < §(w) < (a+b)/2} must contain
at least one point from Bj, yet it does not contain the entire set B;. Thus it
can not be represented as a union of some of the B;, which contradicts the
F-measurability of the set. m]

Definition 1.12. Let (2, F) be a measurable space. A function p : F — [0,00)
is called a finite non-negative measure if

whenever C; € F, i > 1, are such that C;NC; =0 fori # j.

The property expressed in Definition 1.12 is called the countable additivity
(or the o-additivity) of the measure.
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Remark 1.13. Most often we shall omit the words finite and non-negative, and
simply refer to u as a measure. Thus, a measure is a o-additive function on F
with values in R*. In contrast, o-finite and signed measures, to be introduced
in Chapter 3, take values in R* U {+00} and R, respectively.

Definition 1.14. Let g be a binary function on {2 with values 1 (true) and 0
(false). It is said that g is true almost everywhere if there is an event C with
u(C) = p(12) such that g(w) =1 for allw e C.

Definition 1.15. A measure P on a measurable space (12, F) is called a prob-
ability measure or a probability distribution if P(£2) = 1.

Definition 1.16. A probability space is a triplet (2, F,P), where (2, F) is a
measurable space and P is a probability measure. If C € F, then the number
P(C) is called the probability of C.

Definition 1.17. A measurable function defined on a probability space is
called a random variable.

Remark 1.18. When P is a probability measure, the term “almost surely” is
often used instead of “almost everywhere”.

Remark 1.19. Let us replace the o-additivity condition in Definition 1.12 by
the following: if C; € F for 1 < i < n, where n is finite, and C; N C; = @ for

i # j, then
M(U Ci) = ZH(Ci) .
i=1 i=1

This condition leads to the notion of a finitely additive function, instead of
a measure. Notice that finite additivity implies superadditivity for infinite
sequences of sets. Namely,

wlJc = ZM(Cz‘)

i=1

if the sets C; are disjoint. Indeed, otherwise we éould find a sufficiently large
n such that

[e o] n
wlJC) <)Y mcy),
=1 =1
which would violate the finite additivity.

Let {2 be discrete. Then p(w) = P({w}) is the probability of the elementary
outcome w. It follows from the definition of the probability measure that
1. p(w) > 0.
2. Y eopWw)=1.



