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Foreword to Earlier Series Editions

More than a generation of German-speaking students around the world have worked
their way to an understanding and appreciation of the power and beauty of modern
theoretical physics — with mathematics, the most fundamental of sciences — using
Walter Greiner's textbooks as their guide.

The idea of developing a coherent, complete presentation of an entire field
of science in a series of closely related textbooks is not a new one. Many older
physicists remember with real pleasure their sense of adventure and discovery
as they worked their ways through the classic series by Sommerfeld, by Planck
and by Landau and Lifshitz. From the students’ viewpoint, there are a great many
obvious advantages to be gained through use of consistent notation, logical ordering
of topics and coherence of presentation; beyond this, the complete coverage of
the science provides a unique opportunity for the author to convey his personal
enthusiasm and love for his subject.

The present five-volume set, Theoretical Physics, is in fact only that part of
the complete set of textbooks developed by Greiner and his students that presents
the quantum theory. | have long urged him to make the remaining volumes on
classical mechanics and dynamics, on electromagnetism, on nuclear and particle
physics, and on special topics available to an English-speaking audience as well,
and we can hope for these companion volumes covering all of theoretical physics
some time in the future.

What makes Greiner’s volumes of particular value to the student and professor
alike is their completeness. Greiner avoids the all too common “it follows that ... "
which conceals several pages of mathematical manipulation and confounds the
student. He does not hesitate to include experimental data to illuminate or illustrate
a theoretical point and these data, like the theoretical content, have been kept up to
date and topical through frequent revision and expansion of the lecture notes upon
which these volumes are based.

Moreover, Greiner greatly increases the value of his presentation by including
something like one hundred completcly worked examples in each volume. Nothing
is of greater importance to the student than seeing, in detail, how the theoretical
concepts and tools under study are applied to actual problems of interest to a
working physicist. And, finally, Greiner adds brief biographical sketches to each
chapter covering the people responsible for the development of the theoretical ideas
and/or the experimental data presented. It was Auguste Comte (1798-1857) in his
Positive Philosophy who noted, “To understand a science it is necessary to know
its history”. This is all too often forgotten in modern physics teaching and the
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Foreword to Earlier Series Editions

bridges that Greiner builds to the pioneering figures of our science upon whose
work we build are welcome ones.

Greiner’s lectures, which underlie these volumes, are internationally noted for
their clarity, their completeness and for the effort that he has devoted to making
physics an integral whole; his enthusiasm for his science is contagious and shines
through almost every page.

These volumes represent only a part of a unique and Herculean effort to make
all of theoretical physics accessible to the interested student. Beyond that, they
are of enormous value to the professional physicist and to all others working with
quantum phenomena. Again and again the rcader will find that, after dipping into a
particular volume to review a specific topic, he will end up browsing, caught up by
often fascinating new insights and developments with which he had not previously
been familiar.

Having used a number of Greiner’s volumes in their original German in my
teaching and research at Yale, | welcome these new and revised English translations
and would recommend them enthusiastically to anyone searching for a coherent
overview of physics.

Yale University D. Allan Bromley
New Haven, CT, USA Henry Ford Il Professor of Physics
1989



Preface

Theoretical physics has become a many-faceted science. For the young student it is
difficult enough to cope with the overwhelming amount of new scientific material
that has to be learned, let alone to obtain an overview of the entire field, which
ranges from mechanics through electrodynamics, quantum mechanics, field theory,
nuclear and heavy-ion science, statistical mechanics, thermodynamics, and solid-
state theory to elementary-particle physics. And this knowledge should be acquired
in just 8-10 semesters during which, in addition, a Diploma or Master’s thesis has
to be worked on or examinations prepared for. All this can be achieved only if the
university teachers help to introduce the student to the new disciplines as early on
as possible, in order to create interest and excitement that in turn set free essential
new energy. Naturally, all inessential material must simply be eliminated.

At the Johann Wolfgang Goethe University in Frankfurt we therefore confront
the student ‘with theoretical physics immediately in the first semester. Theoretical
Mechanics I and II, Electrodynamics, and Quantum Mechanics [ — an Introduction
are the basic courses during the first two years. These lectures are supplemented
with many mathematical explanations and much support material. After the fourth
semester of studies, graduate work begins and Quantum Mechanics II — Symme-
tries, Statistical Mechanics and Thermodynamics, Relativistic Quantum Mechanics,
Quantum Electrodynamics, the Gauge Theory of Weak Interactions, and Quantum
Chromodynamics are obligatory. Apart from these, a number of supplementary
courses on special topics are offered, such as Hydrodynamics, Classical Field The-
ory, Special and General Relativity, Many-Body Theories, Nuclear Models, Models
of Elementary Particles, and Solid-State Theory. Some of them, for example the
two-semester courses on Theoretical Nuclear Physics and Theoretical Solid-State
Physics, are obligatory.

This volume is devoted to the Theory of Nuclear Models, which forms a two-
semester cycle together with a course on Nuclear Reactions. For this field it ap-
peared to be especially important to present a relatively short textbook actually
suitable for accompanying a lecture, since while there are excellent and compre-
hensive treatises on nuclear models, the wealth of material presented in those tends
to overwhelm the students initially. In this connection we mention preferentially
the three-volume work by Eisenberg and Greiner,! on which the present treatment

' J. M. Eisenberg and W. Greiner, Nuclear Theory, 3 Volumes, Third Edition (North Holland,
Amsterdam 1973-1987).
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is based in many respects, and the textbook by Ring and Schuck,? which puts more
emphasis on many-body approaches.

A textbook for direct use with a lecture has to concentrate on the most essential
points, emphasize the explanation of ideas and methods, and forego the presentation
of a wealth of individual results, which cannot be shown in a lecture anyway if it
is not to degenerate into a slide show. Another characteristic that makes the theory
of nuclear models different from the classical fields of theoretical physics is the
scarcity of examples that can be calculated from start to finish without the use of
computers.

For all of these reasons the focus is on the discussion of the most important types
of models and the requisite mathematical methods. Since experience shows that
most students have not really mastered the crucial methods of angular-momentum
coupling and second quantization, we have not relegated these topics to an appendix
but treated them at the start of the book. Of course these chapters can be ignored
if desired. Even in these chapters the material was carefully restricted to what is
actually used in the rest of the book. Following this there is a short discussion of
group-theoretical methods, which are essential, for example, for the IBA model.

The fifth chapter treats the theory of the radiation field up to the definition of
multipole transition probabilities. Again with a view to brevity the magnetic transi-
tions are only dicussed in general terms. The sixth chapter presents the classical col-
lective models, which because of their didactic value and their fundamental impor-
tance for introducing concepts form the centerpiece of the book. A short overview
of the phenomenological properties of nuclear matter is followed by a treatment of
the geometric collective model (surface vibrations, the rotation—vibration model,
etc.) in the various limiting cases, the IBA model, and the collective theory of giant
resonances.

Only a little less space is devoted to microscopic models in Chapter 7. The
most important concepts, from Hartree—Fock theory via phenomenological single-
particle models to the relativistic mean-field model, are introduced successively.
The next chapter treats the coupling of single-particle and collective motion both
with respect to the particle-plus-core model and to the microscopic description of
collective vibrations.

The final chapter presents large-amplitude collective motion, concentrating
on ways to describe nuclear fission and similar processes. This includes two-
center models, the general problem of collective mass parameters, time-dependent
Hartree-Fock, the generator-coordinate method, and an elementary overview of
high-spin states.

In addition to the classical syllabus of nuclear models that still form the basic
equipment of the nuclear theorist, short discussions of topics of present-day interest
are interspersed in many places — such as superheavy elements, high-spin states, and
the relativistic mean-field model. These should give young physicists an impression
of the continuing vitality of this science. The reader will also note in various places
that the book is based on repeated practical experience with such a course and offers
many explanations and illustrations motivated by typical student questions.

2 P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, New York
1980).
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1. Introduction

1.1 Nuclear Structure Physics

The nuclear models discussed in this book belong to the realm of nuclear structure
theory. In present usage, nuclear structure physics is devoted to the study of the
properties of nuclei at low excitation energies, where individual energy levels can
be resolved. This means that typically quantum effects are predominant and the
states of the nucleus have a very complicated structure that depends on the intricate
interrelations of all the many nucleons involved.

In contrast, at higher energies and especially for heavy-ion reactions, quantum
mechanics becomes less important and the preeminent place is instead given to
methods of statistical mechanics. Theories then typically employ bulk properties
of nuclear matter such as the equation of state or the dissipation coefficients, or
are even based on purely classical many-body physics like the cascade models.

Of course it is impossible to give an exact energy boundary between these
types of theories. The theories presented here, however, are typically employed for
excitation energies up to 2-3 MeV. Usually only the lowest few energy levels can
be described well by a theoretical model, and the number of levels increases so
rapidly above that energy range that it becomes impossible to make any sensible
comparison with experiment (for nuclei with an odd number of neutrons or protons
or both this is even more dramatic — most nuclear models prefer even—even nuclei
with their relatively simple spectra). Also one should remember that in experimental
spectra only a relatively small number of states can be identified as to spin and
parity, and that to really test a model transitions, i.e., essentially overlaps between
the wave functions, are needed, which again are often not known even for the most
interesting states. .

It is thus not surprising that the models presented in this book usually explain a
relatively small number of low-lying states and to a modest accuracy, and even this
is a considerable achievement. To esteem that, remember that we are dealing with
a system of particles whose number is neither small enough to allow direct solution
nor large enough to make statistical methods highly accurate, and which interact
through an interaction that has still not been pinned down to any definite form.
It is this extraordinary difficulty and the freedom with which methods and ideas
from many other branches are applied here that make nuclear structure physics so
fascinating and so much alive.



1. Introduction

1.2 The Basic Equation

To find the proper theoretical starting point some more ballpark estimates of the
relevent physical quantitities have to be introduced. Let us first recall a few numbers
from elementary experimental nuclear physics.

The elements known at the time of this writing have nuclei consisting of (at
present) Z = 1,..., 111 protons and N = 0,...,161 neutrons, giving a total
number of A nucleons. The radii of nuclei follow the empirical law

R(A) = rgA'/? (1.1)

with ry =~ 1.2 fm. Nuclear radii thus range up to about 7.5 fm. The formula also
implies that the nuclear volume is proportional to the number of particles in the
nucleus, indicating the near incompressibility of nuclear matter (the true density
profile observed by electron scattering is a bit more complicated). The least-bound
nucleon has a binding energy of the order of 8 MeV and a kinetic energy close to
40 MeV.

This information is already sufficient to form some rough ideas about what is
essential in the theories. Since a nucleon has a mass of mc? = 938 MeV, the kinetic
energy is quite negligible by comparison, so that a nonrelativistic approach appears
quite sufficient, and this assumption is made in the vast majority of nuclear structure
models. More recently, however, relativistic approaches have become important —
this theme is taken up in Sect.7.4 in connection with the relativistic mean-field
model, and we also explain there why relativistic effects can be important in spite
of the simple estimate given above.

The velocity of a nucleon with a kinetic energy of T =40MeV is given by

/ /2
R = E=c —T—2z0.3c‘ , (1.2)
m mc

and the associated de Broglie wavelength by

2rh  2m(he)

Here the useful constant Ac = 197.32 MeV fm was used. The result shows that
quantum effects are certainly not negligible, as A is by no means small compared
to the nuclear radii. This is even more pronounced for the more tightly bound
nucleons, which have a smaller kinetic energy.

Taking these considerations into account, the starting point for a theory of
nuclear eigenstates should be a stationary Schrodinger equation very generally
given by

Ay=Evy . (1.4)

The rest of this book is about what to write for A and which degrees of freedom
to use in the wave functions.



