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Foreword

The author committed himself to the writing of this book soon after he
started teaching a graduate course on linkage analysis and synthesis at
the Universidad Nacional Autdnoma de México (UNAM), in 1973. At that

time he found that a great deal of knbwledge on the subject, that had
already been accumulated, was rather widespread and not as yet fully
systematised. One exception was.the work of B. Roth, of Stanford
University, which already showed outstanding unity, though appearing

only in the form of scientific papers in different journals. Moreover,
the rate at which new results were presented either in specialised
journals or at conferences all over the world, made necessary a recording

of the most relevant contributions.

On the other hand, some methods of linkage synthesis, like the one of
Denavit and Hartenberg (See Ch. 4), were finding a wide acceptance. It
was the impression of the author, however, that the rationale behind
that method was being left aside by many a researcher. Surprisingly,
he found that virtually everybody was taking for granted, without giving
the least explanation, that the matrix product, pertaining to a coordinate
transformation from axes labelled 1 to those labelled n, should follow an
order that is the inverse of the usual one. That is to say, whereas the
logical representation of a coordinate transformation from axes 1 to 3,
passing through those labelled 2, demands that the individual matrices

and T, be multiplied in the order T

T12 193 937127
method of Denavit and Hartenberg demands that they be placed in the

the application of the

inverse order, i.e. It is explained in Chapter 4 why this is so,

r-I-'12T23'
making use of results derived in Chapter 1. In this respect, the author
departs from the common practice. In fact, while the transformations
involving an affine transformation, i;e. a coordinate transformation, are
usually represented by 4 x 4 matrices containing information about both
therotation and the translation, the author separates them into a matrix
containing the rotation of axes and a vector containing their translation.
The reason why this is done is far more than a matter of taste. As a

matter of fact, it is not always necessary to carry out operations on both
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the rotgtion and the translation parts of the transformation,.as is the
case in dealing with spherical linkages. One more fundamental reason
why the author departs from that practice is the following: in order to
comprise both the rotation and the translation of axes in one single
matrix; one has to define arbitrarily arrays that are not really vectors,
for they contain a constant component. From the beginning, in Chapter 1,
it is explained that only linear transformations are representable by
matrices. Later on, in Chapter 2, it is shown that a rigid.body motionm,
in general, is a nonlinear transformation. This transformation is
linear only if the motion is about a fixed point, which is also

.rigorously proven.

All through, the author has attempted to establish the rationale behind the
methods of analysis, synthesis and optimisation of linkages. In this
respect, Chapter 2 is crucial., 1In fact, it lays the foundations of

the kinematics of rigid bodies in an axiomatic way, thus attempting to
follow the trend of rational mechanics lead by Truesdelll., This Chapter
in turn, is based upon Chapter 1, which outlines the facts of linear
algebra, of extrema of fﬁﬁctions and of numerical methods of solving
algebraic linear and nonlinear systems, that are resorted to throughout
the book. Regarding the numerical solution of equations, all pbssible
cases are handled, i.e. algorithms are outlined that solve the said
system, whether linear or nonlinear, when this is either underdetermined,
determined or overdetermined. Flow diagrams illustrating the said

algorithms and computer subprograms implementing them are included.

The -philosophy of the book is to regard the linkages as systems capable
of being modelled, analysed, synthesised, identified and optimised. Thus
the methods and philosophy introduced here can be extended from linkages,'
i.e. closed kinematic chains, to robots and manipulators, i.e., open

kinematic chains.

Back to the first paragraph, whereas early in the seventies the need to

write a book on the theory and applications of the kinematics of mechanical

1. Truesdell C.% "The Classical Field Theories", in Fligge S., ed.,
Encyclopedia of Physics, Springer-Verlag, Berlin, 1960
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systems was dramatic, presently this need has been fulfilled to a great
extent by the publishing of some books in the last years. Within these, one
that must be mentioned in the first place is that by Bottema and Rothz, then
the one by Duffy3 and that by Suh and Radcliffe4, just to mention a couple of the
recently published contributionsto the specialised literature in the
English language. The author, nevertheless, has continued with the publication
of this book because it is his feeling that he has contributed with a new
point of view of the subject from the very foundations of the theory to the
methods for application to the analysis and synthesis of mechanisms. This
contribution was given a unified treatment, thus allowing the applications

to be based upon the fundamentals of the theory laid down in the first two

chapters.

Although this book evolved from the work done by the author in the course of
the last eight years at the Graduate Division of the Faculty of Engineering-
UNAM, a substantial part of it was completed during a sabbatical leave spent

by him at the Laboratory of Machine Tools of the Aachen Institute of Technology,
in 1979, under a research fellowship of the Alexander von Humboldt Foundation,

to whom deep thanks are due.

The bopk could have not been completed without the encouragement received

from several colleagues, among whom special thanks go to Profs. Bernard Roth

of Stanford University, GUnther Dittrich of Aachen Institute of Technology,
Hiram Albala of Technion-Israel Institute of Technology and Justo Nieto of
Valencia (Spain) Polytechnic University. The support given by Prof. Manfred
Weck of the Laboratory of Machine Tools, Aachen, during the sabbatical leave

of -the author is very highly acknowledged. The discussiors held with Dr. Jacques
M, Hervé, Head of the Laboratory of Industrial Mechanics- Central School of
Arts and Manufactures of Paris, France, contributed highly to the completion

of Chapter 3.

2 Bottema O. and Roth B., Theoretical Kinematics, North-Holland Publishing, Co.,
Amsterdam, 1979.

3 Duffy J., Analysis of Mechdnisms and Robot Manipulators, Wiley-Interscience,
Sommerset, N.J.,, 1980.

4 Such C. - H. and Radchiffe C.W., Kinematics and Mechanisms Design, John
Wiley & Sons, Inc., N.Y., 1978.
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The students of the author who, to a great extent are responsible for the
writing of this book, are herewith deeply thanﬁed. Special thanks are due

to the former graduate students of the author, Messrs. Carlos Ldpez, Candido
Palacios and Angel Rojas, who are responsible for a great deal of the computer
programming included here. Mrs. Carmen Gonzdlez Cruz and Miss Angelina Aréllano
typed the first versions of this work, whereas Mrs. Juana Olyera did the final
draft. Their paﬁiende and very professional work is highly acknowledged.

Last, but by no means leaét, the support of the administration of the Faculty
of Engineering-UNAM, and particularly of its Graduate Division, deserves a
very special mention. Indeed, it provided the author with all the means
required to complete this task.

To extend on more names of pefsbns or institutions who somehow contributed

to the completion of this book would give rise to an endless list, for which
reason the author apologises for unavoidable omissions that he is forced to

make.

Paris, January 1982

Jorge Angeles
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1. Mathematica} Preliminaries

1.0

chapter.

INTRODUCTION. Some relevant mathematical results are collected in this

synthesis and optimization of mechanisms. Often, rigorous proofs are not

provided; however a reference list is given at the end of the chapter, where

the interested reader can find the required details.

1.1. VECTOR SPACE, LINEAR DEPENDENCE AND BASIS OF A VECTOR SPACE.

A vector space, also called a linear space, over a field F (1.1)* , is a

set V of objects, called vectors, having the following properties:

a)

To each pair {g , v} of vectors from the set, there corresponds one

(and only one) vector, denoted x + y, also from V, called "the addition

of x and y" 'such that
i) This addition is commutative, i.e.
X +y=y +Xx

~ ~

ii) It is associative, i.e., for any element z of V,

x+(y+z) = x4y +z
iii) There exists in V a unique vector 0, called "the zero of v",
such that, for any X eV,
x+0=x
iv) To each vector x € V, there corresponds a unique vector -x, also
in V, such that

x € (-x) = 0

* Numbers in brackets designate references at the end of each chapter.

These results find a wide application within the realm of analysis,



b) To each pair {a ,x}, where a € F (usually called "a scalar") and x € V,
there corresponds one vec%or ax €V, called "the product of the scalar
a times x", such that:
i) This product is associative, i.e. for any B € F,

a(Bx) = (aB)x

ii) For the identity 1 of F (with respect to multiplication) the following

holds
1x = x

c) The product of a scalar times a vector is distributive, i.e.

i) a(x +y) = ax + ay

ii) (o + B)x = ax + Bx

Example 1.1.1. The set of triads of real numbers (x,y,z) constitute a
vector space. To prove this, define two such triads, namely (x1,y1,z1) and
(xz,yz,zz) and show that their addition is also one such triad and it is
commutative as well. To prove associativity, define one third triad,

(x3,y3,x3), and so on.

Example 1.1.2 The set of all polynomials of a real variable, t, of degree

less than or equal to n, for 0 <t <1, constitute a vector space over the

field of real numbers.

Example 1.1.3 The set of tetrads df the form (x,y,z,1) do not constitute
a vector space (Why?)

Given the set of vectorg {f1’f2""’fn} c V and the set of scalars

{a1,a ,...,an} < F not necessarily distinct, a linear combination of the

2

n vectors is the vector defined as

c=a, X, +a, X+ .. .4+0a X
% 1 .1 2 .2 . n .n



The said set of vectors is linearly independent (£. i.) if c equals zero
implies that all «'s are zero as well. Otherwise, the set is said to be
linearly dependent (£. d.)

Example 1.1.4 The set containing only one nonzero vector, {x},is £.i.
Example 1.1.5 The set containing only two vectors, one of which is the
origin, {x,0}, is £.4d.

The set of vectors {x_,x

.,xn} < V spans V if and only if every vector

112277

v £ V can be expressed as a linear combination of the vectors of the set.

A set of vectors B = {x1,x ,xn}C’V is a basis for V if and only if:

gre
i) B is linearly independent, and

ii) B spans V

All bases of a given space V contain the same number of vectors. Thus, if
B is a basis for V, the number n of elements of B is the dimension

of V (abreviated: n=dim V)

Example 1.1.6 In 3-dimensional Euclidean space the unit vectors {i, 3}
lying parallel to the X and Y coordinate axes span the vectors in the X-Y

plane, but do not span the vectors in the physical three-dimensional space.

Exercise 1.1.1 Prove that the set B given above is a basis for V if and

.lonly if each vector in V can be expressed as a unique linear combination of

the elements of B.

1.2 LINEAR TRANSFORMATION AND ITS MATRIX REPRESENTATION

Henceforth, only finite-dimensional vector spaces will be dealt with and,

when necessary, the dimension of the space will be indicated as an exponent

of the space, i.e., Vn means dim V=n.

A transformation T, from an m-dimensional vector space U, into an n-dimensional
,vector space V is a rule which establishes a correspondence between an

element of U and a unique element of V. It is represented as:



T 0" 5 VD (1.2.1)

m
If ueg U and v ¢ v? are such that T: u 5 v, the said correspondence may

also be denoted as

v = T(u) (1.2.3a)
T is linear if and only if, for any u, u1 and u2 e U, and a ¢ F,
= 1
i) Tlu, + gz) T(y,) + T(u,) and (1.2,3b)
ii) T(au) = aT(u) (1.2.3c)

Space U™ over which T is defined is called the "domain" of T, ‘whereas the
subspace of v? containing vectors v for which eg. (1.2.3a) holds is called
the "range" of T. A subspace of a given vector space V is a subset of V and
is in turn a vector space, whose dimension is less than or equal to that

of V

Exercise 1.2.1 Show that the range of a given linear transformation of a

vector space U 1nto a vector space V constitutes a subspace, i.e. it satisfies

properties a) to c) of Section 1.1.

For a given g c U, vector v, as defined by (1.2.2) is called the “"image of

u under T", or, simply, the "image of u" if T is selfunderstood.

An example of a linear transformation is an orthogonal projection onto a
plane. Notice that this projection is a transformation of the three-dimen-
sional Euclidean space onto a two-dimensional space (the plane). The domain
of T in this case is the physical 3-dimensional space, while its range is

the projection plane.

If T, as defined in (1.2.1), is such that all of 'V contains v's such that

(1.2.2) is satisfied (for some u's), T is said to be "onto". If T is such



that, for all distinct u,l and u2, T(u1) and T(uz) are also distinct, T is

said to be one-to-one. If T is onto and one-to-one, it is said to be

invertible.

If T is invertible, to each v € V there corresponds a unique u € U such that

-~ ~

: . -1
vy = T(w), so one can define a mapping T : V = U such that

=T (v (1.2.4)

~

T_1 is called the "inverse" of T.

Exercise 1.2.2 ‘Let P be the projection of the three-dimensional Euclidean
space onto a plane, say, the X-Y plane. Thus, v = P(u) is such that the
vector with components (x, y, z), is mapped into the vector with components

(x, y, 0).

i) Is P a linear transformation?

ii) Is P onto?,one-tp-one?, invertible?

A very important fact concerning linear transformations of finite dimen-
sional vector spaces is contained in the following result:

Let L be a linear transformation from U" into vq>Let Bu and Bv be bases

for U™ and Vn, respectively. Then clearly, for each uie Bu its image L(ui)

€ V can be expressed as a linear combination of the vk's in Bv' Thus

L(u.)=a_..v.+a_ .V +...+0 .V 1::2. 5
(El) 1i~1 "2i~2 %ni¥n . <A )
Consequently, to represent the images of the m vectors of Bu, mn scalars

like those appearing in (1.2.5) are required. These scalars can be arranged

in the following manner:

(@4, %12 ...%%m
%21 @2 ** %

(2] = : ) ) (1.2.6)
%n1 %n2 " %m




where the brackets enclosing A are meant to denote a matrix, i.e. an array
of numbers, rather than an abstract linear transformation.

LA] is called "The matrix of L referred to Bu and Bv" . This result is

summarized in the following:

DETINITION 1.2.1 The £ zh column of the matrnix representation of L,
refered to B, and B,, contains the scalar coefficients O 0§ the
rnepresentation (in tenms of BU) of the image of the 4 th vector of B,

Example 1.2.1 What is the representation of the reflexion R of the 3-dimen

sional Euclidean space E3 into fitself, with respect to one plane, say the

X-Y plane, referred to unit vectors parallel to the X,Y,Z axes?.
Solution: Let i, j, k, be unit vectors parallel to the X, Y and Z axes,

respectively. Clearly,

R(i) = i
R(j) =]
R(k) =-k

Thus, the components of the images of i, j and k under R are:

~

0 0
11, Rx) = |o
0 - -1

RGE) = é o (r3)

Hence, the matrix representaéion of R, denoted by ﬁq, is

1 0 o
R) =fo 1 o (1.2.7)
o o -1

Notice that, in this case, U = V and so, it is not necessary to use two
different bases for U and V. Thus, &ﬂ , as given by (1.2.7), is the
matrix representation of the reflection R under consideration, referred

~

to the basis {i, j, k} .



1.3 RANGE AND NULL SPACE OF A LINEAR TRANSFORMATION

As stated in Section 1.2, the set of vectors v € V for which there is at
least one u € U such that v = L(u), as pointed out in Sect. 4.2., is called

"the range of L" and is represented as R(L), i.e. R(L) = (v=L(u): u € U).

The set of vectors u_ € U for which L(uo) = 0 € V is called "the null space

(o]

of L" and is represented as N(L), i.e. N(L) {u :L(u0)=0}.

0
It is a simple matter to show that R(L) and N(L) are subspaces of V and U,
respectively¥*. ]
The dimensions of dom(L), R(L) and N(L) are not independent, but they are
related (see ﬁ.@ ):

dim dom(L)=dim R(L) + dim N(L) €1.3%21)
Example 1.3.1 In considering the projection cf Exercise 1.2.1, U is E3 and
thus R(g) is the X-Y plane, N(g) is the Z axis, hence of dimension 1. Thé
X-Y plane is two-dimensional and dom(L) is three-dimensional, hence (1.3.1)
holds.

Exercise 1.3.1 ‘Describe the range and the null space of the reflection of

Example 1.2.1 and verify that eq.. (1.3.1) holds true.

1.4 EIGENVALUES AND EIGENVECTORS OF A LINEAR TRANSFORMATION

Let L be a linear transformation of V into itself (such an L is called an -

-~

"endomorphism"”). In general, the image L(v) of an element v of V is linearly

-~ -

independent with v, but if it happens that a nonzero vector v and its image

under L are linearly dependent, i.e. if

L(v) = Av (1.4.1)

* The proof of this statement can be found in any of the books listed in
the reference at the end of this chapter.



