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Preface

In the past two decades structural equation modeling (SEM) has quickly pervaded
various fields, such as psychiatry, psychology, sociology, economics, education,
demography, political sciences, as well as biology and health studies. Compared
with traditional statistical methods such as multiple regression, ANOVA, path anal-
ysis, and multilevel models, the advantages of SEM include, but are not limited to,
the ability to take into account measurement errors; model multiple dependent vari-
ables simultaneously; test overall model fit; estimate direct, indirect and total
effects; test complex and specific hypothesis; handle difficult data (time series with
auto-correlated error, non-normal, censored, and categorical outcomes); test model
parameter invariance across multiple populations/groups, and conduct mixture
modeling to deal with population heterogeneity. However, SEM is still an under-
utilized technique in social science studies and health studies. The intent of this
book is to provide a resource for learning SEM, and a reference guide for some
advanced SEM models.

The book emphasizes basic concepts, methods and applications of structural
equation modeling. It covers the fundamentals of SEM, as well as some recently
developed advanced SEM models. Written in non-mathematical terms, a variety of
SEM models for studying both cross-section and longitudinal data are discussed.
Examples of various SEM models are demonstrated using real-world research data.
The internationally well-known computer program Mplus (Muthén & Muthén,
1998-2010) is used for model demonstrations, and Mplus program syntax is pro-
vided for each example model.

This book is divided into seven chapters. Chapter 1 gives an overview of SEM.
The basic concepts of SEM, the methods and principles of SEM applications are
discussed through five steps of model formulation, model identification, model esti-
mation, model evaluation, and model modification.

Chapter 2 discusses confirmatory factor analysis (CFA) and its applications.
Some advanced issues in CFA modeling, such as how to deal with violation of
multivariate normality assumption, censored outcome measures, and categorical
outcomes, are addressed in model demonstration. At the end of the chapter the first-
order CFA model is extended to second-order CFA model.

Chapter 3 discusses SEM model and its applications, starting with the special
case of SEM, called MIMIC (multiple indicators and multiple causes) model, dif-
ferent SEM models are discussed and demonstrated using real data. This chapter
addresses some important practical issues that SEM practitioners often encounter,
such as interactions between covariates, interactions involving latent variables,
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testing differential item functioning (DIF), testing indirect and total effects, and
correcting for effect of measurement error in a single indicator variable.

Chapter 4 extends the application of SEM to longitudinal data analysis where
subjects are followed up over time, with repeated measures of each variables of
interest. A recently developed SEM model for longitudinal data analysis, called
latent growth model (LGM), is discussed. Various LGM models such as linear
LGM, non-linear LGM, multi-growth process LGM, two-part LGM, and LGM
with categorical outcomes are demonstrated to assess features of outcome growth
trajectories.

Chapter 5 extends the application of SEM from a single group to multiple
groups to assess whether measuring instrument operates equivalently across differ-
ent populations/groups (i.e., measurement invariance) or whether causal relation-
ships are invariant across populations/groups. Model demonstrations in this chapter
cover multi-group CFA models, including multi-group first-order and second-order
CFA models, multi-group SEM, and multi-group LGM models.

In Chapter 6 we switch our topic to mixture models (or finite mixture models)
that have increasingly gained in popularity as a framework of combination of
variable-centered and person-centered analytic approach. Mixture modeling ena-
bles researchers to identify unknown a priori homogeneous groups/classes of indi-
viduals based on the measures of interest; examine the features of heterogeneity
across the groups/classes; evaluate the effects of covariates on the group/class mem-
bership; assess the relationship between the group/class membership and other out-
comes; and study transitions between the latent group/class memberships over time.
Different mixture models including latent class analysis (LCA) model, latent transi-
tion analysis (LTA) model, growth mixture model (GMM) and factor mixture model
(FMM) are discussed and demonstrated.

The last chapter discusses power analysis and sample size for structural equa-
tion modeling. After a brief review of the rule of thumbs, regarding appropriate
sample size for SEM, different approaches to estimate the sample size needed for
SEM are discussed. In terms of the ability to detect nonzero model parameters,
both Satorra-Saris’s method (1985) and Monte Carlo simulation are applied to con-
duct power analysis and sample size estimates for CFA and LGM models. And then
we demonstrate how to use some newly developed methods of power analysis for
SEM, such as the MacCallum, Browne, & Sugawara’s method (1996) and the
Kim’s method (2005), to calculate statistical power given a sample size or to esti-
mate an appropriate sample size to achieve a desired power (e.g., 0.80) based upon
null hypothesis test about a model overall fit index.

Structural equation modeling is a generalized analytical framework that can
deal with many sophisticated modeling situations. The recent development in struc-
tural equation modeling includes, but is not limited to, continuous time survival
SEM (Larsen 2005; Asparouhov, Masyn & Muthen 2006), multilevel SEM (Muthén
1994; Toland & De Ayala 2005), multilevel mixture SEM (Asparouhov & Muthén
2008), and exploratory SEM (Asparouhov & Muthen, 2009), as well as Bayesian
structural equation modeling (BSEM) (Asparouhov & Muthen 2010; Muthén &
Asparouhov 2011b). These topics are beyond the scope of this book.
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A wide variety of computer programs are now available for structural equation
modeling. Most structural equation models can be set up and estimated with each of
these programs. Which program should be used is often a matter of price, support,
and personal preference. The computer program used in this book for model
demonstration is Mplus (http://www.statmodel.com/) and is becoming increasingly
popular in the field of structural equation modeling. This program allows research-
ers to conduct various advanced SEMs without much complexity of programming.
The models demonstrated in this book are intended to show readers how to build
SEM models in Mplus using both cross-sectional and longitudinal data. The Mplus
syntax used for the example models are provided in the book. While data sets used
for these example models in the book are drawn from public health studies.
The methods and analytical techniques are applicable to all fields of quantitative
social studies.

The target readership of the book is teachers, graduate students, and research-
ers in social sciences and health studies. This book can be used as a resource for
learning SEM and a reference guide for conducting SEMs using Mplus. Readers
are encouraged to contact the author at jiwang@gwu.edu in regard to feedback,
suggestions and questions.
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Introduction

The origins of structural equation modeling (SEM) stem from factor analysis
(Spearman, 1904; Tucker, 1955) and path analysis (or simultaneous equations)
(Wright,1918, 1921, 1934). By integrating the measurement (factor analysis) and
structural (path analysis) approaches, a more generalized analytical framework is
produced, called SEM (Joreskog, 1967, 1969, 1973; Keesling, 1972; Wiley, 1973).
In SEM, unobservable latent variables (constructs or factors) are estimated from
observed indicator variables, and the focus is on estimation of the relations among
the latent variables free of the influence of measurement errors (Joreskog, 1973;
Joreskog and Sorbom, 1979; Bentler,1980, 1983; Bollen, 1989a).

SEM provides a mechanism for taking into account measurement error in the
observed variables involved in a model. In social sciences, some constructs, such as
intelligence, ability, trust, self-esteem, motivation, success, ambition, prejudice,
alienation, and conservatism, cannot be directly observed. They are essentially
hypothetical constructs or concepts, for which there exists no operational method
for direct measurement. Researchers can only find some observed measures that are
indicators of a latent variable. The observed indicators of a latent variable usually
contain sizable measurement errors. Even for variables, which can be directly meas-
ured, measurement errors are always a concern in statistical analysis. Traditional
statistical methods [e.g., multiple regressions, analysis of variance (ANOVA), path
analysis, simultaneous equations] ignore the potential measurement error of varia-
bles included in a model. If an independent variable in a multiple regression model
has measurement error, then the model residuals would be correlated with this inde-
pendent variable, leading to violation of the basic statistical assumption. As a result,
the parameter estimates of the regression model would be biased and result in
incorrect conclusions. SEM provides a flexible and powerful means of simulta-
neously assessing the quality of measurement and examining causal relationships
among constructs. That is, it offers an opportunity of constructing the unobserved

Structural Equation Modeling: Applications Using Mplus, First Edition. Jichuan Wang and Xiaogian Wang.
© 2012 by Higher Education Press. All rights reserved.



2 STRUCTURAL EQUATION MODELING

latent variables and estimating the relationships among the latent variables that are
uncontaminated by measurement errors.

Other advantages of SEM include, but are not limited to, the ability to model
multiple dependent variables simultaneously; the ability to test overall model fit,
direct and indirect effects, complex and specific hypotheses, and parameter
invariance across multiple between-subjects groups; the ability to handle difficult
data (e.g., time series with autocorrelated error, non-normal, censored, count and
categorical outcomes), and to combine person-centered and variable-centered ana-
lytical approaches. The related topics on these model features will be discussed in
the following chapters.

This chapter gives a brief introduction to SEM through five steps that character-
ize most SEM applications (Bollen and Long, 1993):

1. Model formulation. It refers to correctly specifying the SEM model that the
researcher wants to test. The model may be formulated on the basis of theory or
empirical findings. A general SEM model is composed of two parts: the mea-
surement model and the structural model.

2. Model identification. It determines whether there is a unique solution for all the
free parameters in the specified model. Model estimation cannot be implemented
if a model is not identified, and model estimation may not converge or reach a
solution if the model is misspecified.

3. Model estimation. It is to estimate model parameters and generate fitting func-
tion. Various estimation methods are available for SEM. The most common
method for SEM model estimation is maximum likelihood.

4. Model evaluation. After meaningful model parameter estimates are obtained, the
researcher needs to assess whether the model fits the data. If the model fits data
well and results are interpretable, then the modeling process can stop after this
step.

5. Model modification. If the model does not fit the data, re-specification or modifi-
cation of the model is needed. In this instance, the researcher makes a decision
regarding how to delete, add, or modify parameters in the model. The fit of the
model could be improved through parameter re-specification. Once a model is
re-specified, steps 1 through 4 may be carried out again. The model modification
may be repeated more than once in real research. In the following sections we
will introduce the SEM process step by step.

1.1 Model formulation

In SEM, researchers begin with the specification of a model to be estimated. There
are different approaches to specify a model of interest. The most intuitive way of
doing this is to describe one’s model by path diagrams first suggested by Wright
(1934). Path diagrams are fundamental to SEM since it allows researchers to formu-
late the model of interest in a direct and appealing fashion. The diagram provides a
useful guide for clarifying a researcher’s ideas about the relationships among
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variables and they can be directly translated into corresponding equations for
modeling. Several conventions are used in developing a SEM model path diagram,
in which the observed variables (also known as measured variables, manifest
variables, or indicators) are presented in boxes, and latent variables or factors are in
circles or ovals. Relationships between variables are indicated by lines; lack of line
connecting variables implies that no direct relationship has been hypothesized
between the corresponding variables. A line with a single arrow represents a
hypothesized direct relationship between two variables, with the head of the arrow
pointing toward the variable being influenced by another variable. The bidirectional
arrows refer to relationships or associations, instead of effects, between variables.

An example of a hypothesized general structural equation model is specified
in the path diagram shown in Figure 1.1. As mentioned above, the latent variables
are enclosed in ovals and the observed variables are in boxes in the path diagram.
The measurement of a latent variable or a factor is accomplished through one or
more observable indicators, such as responses to questionnaire items that are
assumed to represent the latent variable. In our example two observed variables
(x; and x;) are used as indicators of the latent variable &, three indicators
(x; — x3) for latent variable &,, and three (y, — y3) for latent variable n;. Note that
n, has a single indicator, indicating that the latent variable is directly measured
by a single observed variable. This special case will be discussed later.

The latent variables or factors that are determined by variables within the model
are called endogenous latent variables, denoted by 7; the latent variables, whose
causes lie outside the model, are called exogenous latent variables, denoted by &. In
the example model, there are two exogenous latent variables (&, and &) and two
endogenous latent variables (7, and 7,). Indicators of the exogenous latent variables
are called exogenous indicators (e.g., x; — Xs), and indicators of the endogenous
latent variables are endogenous indicators (e.g., y; —ys). The former has a

O3 —> X3

O —> x4

65 —> X5

Figure 1.1 A hypothesized general structural equation model.
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measurement error term symbolized as §, and the latter has measurement errors
symbolized as ¢ (Figure 1.1).

The coefficients 8 and y in the path diagram are path coefficients. The first sub-
script notation of a path coefficient indexes the dependent endogenous variable, and
the second subscript notation indexes the causal variable (either endogenous or
exogenous). If the causal variable is exogenous (), the path coefficient is a y; if the
causal variable is another endogenous variable (), the path coefficient is a . For
example, B, is the effect of endogenous variable 7, on the endogenous variable 7,;
y12 is the effect of the second exogenous variable &, on the first endogenous varia-
ble n;. As in multiple regressions, nothing is predicted perfectly; there are always
residuals or errors. The ¢s in the model, pointing toward the endogenous variables,
are structural equation residual terms.

Different from the traditional statistical methods, such as multiple regressions,
ANOVA, and path analysis, SEM focuses on latent variables/factors rather than
on the observed variables. The basic objectives of SEM are to provide a means of
estimating the structural relations among the unobserved latent variables of a
hypothesized model free of the effects of measurement errors. These objectives
are fulfilled through integrating a measurement model (confirmatory factor analy-
sis, CFA) and structural model (structural equations or latent variable model) into
the framework of a structural equation model. It can be claimed that a general
structural equation model consists of two parts: (1) the measurement model that
links observed variables to unobserved latent variables (factors); and (2) structural
equations that link the latent variables to each other via a system of simultaneous
equations (Joreskog, 1973).

1.1.1 Measurement model

A measurement model is the measurement component of a structural equation
model. The main purpose of a measurement model is to describe how well the
observed indicator variables serve as a measurement instrument for the underlying
latent variables or factors. Measurement models are usually carried out and eval-
uated by CFA. As a measurement model, CFA proposes links or relations between
the observed indicator variables and the underlying latent variables/factors that
they are designed to measure; then, it tests them against the data to ‘confirm’ the
proposed factorial structure.

In the structural equation model specified in Figure 1.1, three measurement
models can be considered (Figure 1.2a—c). In each measurement model, the A co-
efficients, which are called factor loadings in the terminology of factor analysis, are
the links between the observed variables and latent variables. For example, in
Figure 1.2a the observed variables x; — x5 are linked through A,;; — A,s; to latent
variables &, and &, respectively. In Figure 1.2b the observed variables y, — y; are
linked through A,;; — A,3; to latent variable ;. Note that Figure 1.2c can be con-
sidered as a special CFA model with a single factor 7, and a single indicator y,.
Of course this model cannot be estimated separately because it is unidentified. We
will discuss this issue later.
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(@) g,
5

53

8y

S5

Figure 1.2 (a) Measurement model 1. (b) Measurement model 2. (c) Measurement model 3.

Factor loadings in CFA models are usually denoted by the Greek letter A. The
first subscript notation of a factor loading indexes the indicator, and the second
subscript notation indexes the corresponding latent variable. For example, 2,2,
represents the factor loading linking indicator x, to exogenous latent variable &;;
and 1,3, represents the factor loading linking indicator y3 to endogenous latent
variable ;.

In the measurement model shown in Figure 1.2a, there are two latent variab-
les/factors, & and &,, each of which is measured by a set of observed indicators.
Observed variables x; and x», are indicators of the latent variable &, and x3 — x5
are indicators of &. The two latent variables, & and &;, in this measurement mode
are correlated with each other (¢, in Figure 1.2a stands for the covariance between
& and &), but no directional or causal relationship is assumed between the
two latent variables. If these two latent variables were not correlated with each
other (i.e., ¢;» =0) there would be a separate measurement model for &, and &,,
respectively, where the measurement model for &, would have only two observed
indicators, thus it would not be identified.

For a one-factor solution CFA model, a minimum of three indicators is required
for model identification. If no errors are correlated, a one-factor CFA model with
three indicators (e.g., the measurement model shown in Figure 1.2b) is just identi-
fied (i.e., the number of observed variances/covariances equals the number of free
parameters).' In such a case, model fit cannot be assessed although model parame-
ters can be estimated. In order to assess model fit, the model must be over-identified
(i.e., the observed pieces of information are more than model parameters that need
to be estimated). Without specifying error covariances, a one-factor solution CFA
model needs at least four indicators in order to be over-identified. However, a factor
with only two indicators may be acceptable if the factor is specified to be correlated
with at least one of the other factors in a CFA model and no error terms are

"For a one-factor CFA model with three indicators, there are 3x(3+1)/2=6 observed
variances/covariances. When covariance structure (COVS) is analyzed, six free parameters:
two factor loadings (one loading is fixed to 1.0), one variance of the factor, and three vari-
ances of the error terms; thus degrees of freedom (df) =0.
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correlated with each other (Bollen, 1989a; Brown, 2006). The measurement model
shown in Figure 1.2a is over-identified though factor &, has only two indicators.
Nonetheless, multiple indicators need to be considered to represent the underlying
construct more completely since different indicators can reflect nonoverlapping
aspects of the underlying construct.

Figure 1.2c shows a simple measurement model. For some single observed indi-
cator variables (e.g., gender, ethnicity) that are less likely to have measurement
errors, the simple measurement model would become like y, =n,, where factor
loading Ay4, is set to 1.0 and measurement error &4 is 0.0. That is, the observed
variable y, is a ‘perfect’ measure of construct 7,. If the single indicator is not a
perfect measure, measurement error cannot be modeled but rather one must specify
a fixed measurement error variance based on a known reliability of the indicator
(Hayduk, 1987; Wang et al., 1995). This issue will be discussed in Chapter 3.

1.1.2 Structural model

Once latent variables/factors have been assessed in the measurement models, the
potential relationships among the latent variables are hypothesized and assessed
in the structural model (structural equations or latent variable model) (Figure 1.3),
in which path coefficients y11, y12, 21, and y»; specify the effects of the exogenous
latent variables &, and &, on the endogenous latent variables 7, and n,, while B;,
specifies the effect of 7, on n;; that is, the structural model defines the relationships
among the latent variables, and it is estimated simultaneously with the measurement
models. Note, if the variables in a structural model were all observed variables,
rather than latent variables, the structural model would become a modeling system
of structural relationships among a set of observed variables; thus, the model
reduces to the traditional path analysis in sociology or simultaneous equation model
in econometrics.

Figure 1.3 Structural model.
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The model shown in Figure 1.3 is a recursive model. If the model allows for
reciprocal or feedback effects (e.g., 7, and 7, influence each other), then the model
is called a nonrecursive model. Applications of only recursive models will be dis-
cussed in this book. Readers who are interested in nonrecursive models are referred
to Berry (1984) and Bollen (1989a).

1.1.3 Model formulation in equations

When the covariance structure is analyzed, the general structural equation model
can be expressed by three basic equations:

n=Bn+T&+¢
Y=Amn+e (1.1)
X=Ak+56

These three equations are expressed in matrix format. Definitions of the variable
matrices involved in the three equations are shown in Table 1.1.

The first equation in Equation (1.1) represents the structural model which
establishes the relationships or structural equations among latent variables.
The components of n are endogenous latent variables; and the components of £ are
exogenous latent variables. The endogenous and exogenous latent variables are
connected by a system of linear equations with coefficient matrices B (beta) and I'
(gamma), as well as a residual vector ¢ (zeta), where I represents effects of exoge-
nous latent variables on endogenous latent variables, B represents effects of some
endogenous latent variables on other endogenous latent variables, and ¢ represents
the regression residual terms.

The second and third equations in Equation (1.1) represent measurement
models which define the latent variables from the observed variables. The second
equation links the endogenous indicators — the observed y variables — to endoge-
nous latent variables (i.e., ns), while the third equation links the exogenous
indicators — the observed x variables — to the exogenous latent variables (i.e., &s).

Table 1.1 Definitions of the variable matrices in the three basic equations of the general
structural equation model.

Variable Definition Dimension
n (eta) Latent endogenous variable mx 1
£ (xi) Latent exogenous variable nxl
¢ (zeta) Residual term in equations mx 1
y Endogenous indicators px1
X Exogenous indicators gx1
¢ (epsilon) Measurement errors of y px1
§ (delta) Measurement errors of x gx1

Note: m and n represent the number of latent endogenous and exogenous latent variables, respectively; p
and ¢ are the number of endogenous and exogenous indicators, respectively, in the sample.



