PEARSON

UNIX

TRIEINE (sum)

[2£] Brian W. Kernighan Rob Pike #

PROGRAMMING
B Z2AARZRIUNIXEZ 2 ENVROMAENT
B ABRIUNIXAITEHZIE, 258 TUNIXEIRHHEE
B SEiSERemES L. BEURFSNEY RPN
Bl E ™ VG

¢1

i
1l

IS 4

ShR)

PEARSON

155 (

JRiE I

[2£] Brian W. Kernighan Rob Pike #

EBERSEB (CIP) B

UNIXGIERREE © 3L / (3B) BN
(Kernighan,B.W.) , () ¥k (Pike,R.) F#. — Jbx
: NREBEEH AR, 2013.2

ISBN 978-7-115-30243-4

I. QU II. O @R . @
UNIX#/E RS — B —% IV. OTP316. 81

[AR A B PR CTP AR 7 (2012) 553091535

RELASLE

Original edition, The Unix Programming Environment, 9780139376818, by Brian W. Kemighan,
Rob Pike, published by Pearson Education, Inc., publishing as Prentice-Hall, Copyright © 1984.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording or by any information
storage retrieval system, without permission from Pearson Inc.

English reprint published by Pearson Education North Asia Limited and Posts &
Telecommunication Press, Copyright © 2013.

This edition is manufactured in the People’s Republic of China, and is authorized for sale and
distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and
Macau SAR).

A FHEEH Pearson Education BAREFM A HIRE, TIHFEETSHE.

UNIX 4RI2INE (FICHR)
* E {Z] Brian W. Kernighan, Rob Pike
FEHE T R
o AREREHEBRET ik s w14 5

#B4% 100061 BTFHM 315@ptpress.com.cn
M4t http://www.ptpress.com.cn

e T BB R ED A BR A] ELRI
® JFA:. 700x1000 1/16

ENgk: 23
FH: 493 T 2013F2AB 1K
EN¥L. 1 -2 500 M 2013 42 2 4L U IKEIRY

EEBARZILS EF: 01-2012-8862 =
ISBN 978-7-115-30243-4
Efr: 59.00 7T

R E M. (010067132692 ENEERENRLZ. (010)67129223
RSN #E: (010)67171154

HAERR

AR UINX mZBANERGE . EEFE “BZUE” BUEE, MY
MEEE N T UNIX RERBENEAF T RREMTE, FE¥ UNIX WREE ¥
AN, UEBEE E NG UNIX £4. A BRFENAFLRE UNIX R4
HABE, SUHRL. Shell iFE. TR, frdE VO BEHE. REFH. BFITXR
TH. XS TRE,

AHiEE UNIX REMFI¥E#E LUK UNIX REGEN BT H L.

=}
[l

“UNIX 248 S 5T OREKAT 104, B LA £,
(UNIX #A4 R FM (28N, 1972% 6 A

UNIX 8{ER % 46T 1969 4 JUR LM FIK— & B # f) DEC PDP-7 ##4l. Ken
Thompson 7F Rudd Canaday. Doug Mcllroy. Joe Ossanna F Dennis Ritchie FJ# 5K EF
HZFHRET —ANNRGER SR RS, X—RENFEEAREZURS I #OBAF,
HHBLALE TEEREZKNLE (—4& PDP-11/20) LiafTATHRIA §dE. Ritchie
REMA A Z—, 1970 4, MhEHXANRAEBHE|—& PDP-11 L. fhil ¥kt
HBWMET CiEFTHIES. 1973 4£, Ritchie 1 Thompson | CiEEFEHHE T UNIX
W, FIBTHICRIESRE RRBMRMER . RIRREZ)G, UNIX RETBERHA
TARBIFET .

1974 F£31 /5, UNIX #RG &N RY, AT “BEMR”, JUEZFEITHEMT
BN . FXBEEE, UNIX REEJNURSER EHIE TR, BEAT ERE.
WYFRIME .. FREPLMBFEAFNESEXRFRE. ML, EEHRILREAN
vk, TWETHRT LR, Wi T AEHLBIRE ENR &AL,

Rt 44l UNIX REWILETI? RATEEB RN ZRIER . HE, BFEH CHES
W5, HTHBHE, UNIX RG] LULBITEMNEILEIRR MR RPEE L, XEEX
fEDL RS ik, ERBAERSKETRE, FEZRARNELENFR KT,
BEHREEEN—&, BE—NMFRIERSR, MNEFRUHINL, UNIX H2HE
WEIFEFE HREFUEN.

RE& UNIX RESIAT IS REERBEFREAR, HR2ERRDIFAZRE AN E
MEFERE B, KR, BEREBCRET —MERERTE —MEEENRE %,

1 UNIX £ JURSER) — AN HtR. “UNIX” RE—MHE1, M Thompson 55 Rithie A UNIX
Z BT &% B3R 4E R 45 MULTICS JRAE IR TE

1)

m

BARXREZRER—FAERTRE AN, BB UEEN: RERR
HEZHRETEFZAGER, MIERFALS. #H UNIX BFAS A SRR
BEES, BRERMEFRHES, RRAYBRAMEA LA,

A SIEER UNIX REEE%E., BARXMERETEFPZAENRR, FUlE]
VWA AES SEETITREA TR, BRAKEATZFEAEGETFULFAMNEF
kBN, N TREHAEH UNIX REREEME, SO0 A E A
B, CERFNALETEIENAE.

B UNIX RZEMT R, BTHNHABFHEFS CEBkD. RErfkE, &
FIEASER, MEELBRESHE, (EEABEEHFES), hARRE—HEMHA
RBFR, REFARE—BEF, Ex5RIE LA URRTRAMES. AR,
B —EHARBE, MEEIBENRRTR. RINFEELHZES, I
WRFAFPERZE,, HEBHEEECHER, ARMERXNRSE, FHFEH
. BAIAHBEREERERAL UNIX,

AP EREEEMEOEFR, FEETEEMAIN T IEZERMSE TERR
BEEENAETR, REBRIMWEREERBEFR, EREWNAEHAFTRZRRE
208, FTLLXEB S A SLME Pt B B

HEAHARE, RIS R EHA L FiIe AL 88 7% BRI A
HhHSRFpRAISE EEE2RATRINBEEFN—85. 2BHAERFHC
AEXAFRATIINRR, FRE BT AT,

ERMASMT. B 1 ERNREERRRENRANE, AFEER. BHF. X
HRG. FHMLSGASBBERFHEARE, ALRMHPIUBidix—&.

%2 FiE UNIX RS LERARREREAGEHBZL, FRUATR
RS, RULATHRE. REHRTXHMEFR, RMCHFEA L EES]
Fip, AEUGRAEREHR S IFRBBRIENS K.

3 EHRT WA EHASBEBEIT (B Shel), FELFKUEFGS. &
42, Shell TR, EALHRMGANHHEZW. Shell B—MERTH, SN
ATETER WA THRERER.

%4 BXRENALIESS, —FEERRET R B REF. 41 BB grep
BABRASLEHXHE; 42 WIHSUNEF WAL IESS, W osort; FRKIL
LI 4 sed AT awk IXBNE ISR BAR)T . sed BB—MRGBRERE, qJLINET
R ER B ITaRE . avk B2—MATHAGEEBRENRGERMREES. FHX
BRERFE CENS Shell HpE), FETMLsEEBAENRE.

% 5 Fitie i fE A Shell R'E HATtHMNERMERF. FEEEESRWE
B RE. BRI, X—BEHEFRREE LRIHT sed. awk I Shell,

o
i}

A5 4415 %)| Shell FIBLIEREFHIMIR. 58 6 FiTieunfl ff FARHER VO FEgw
BEHRF. XERFEH CESHE, XEBEIEACE TR, B EEFIXME
F. X-EXEAECTEATEFRBRIIMALH E HE R, BRERIAE
FrTHE B B LA R AF LA LR 5.

%7 BAEREEA, ZRTEIMERAERGEM. FEBFERMARDT. 3
e, R, B, BIWA. EENES.

%8 HIHERIF AR TR yace B—MEVESHTERAS, make 6| KF2F %R
R, lex ARMUAESTER. 2ERBSU—NESHBEFFARES (—MHKCIE
ERAENTIESS) AFEMITHR.

9 BIHEOHER TR, FNE 8 TRFIFTHESNHE R PIMEERER
T R IX e T B o X —F 0] DU, F HAR TS T 5L .

Mk 1 B4 ThrnEmBE e ed. BARVFE A H WA Tl ik 2 Hfth 4w
2%, (B2 ed BEAMREAM . BERIERNZRIAE grep Fl sed FRFIZL, UK
AN HAES .

M2 BETHESEIHBESHSETM.

MR 3 B HBR PR RANER, MRS, &1 5.

BER--RLERPREE. 5%, UNIX REGCLIEFRIT, AFL5 2N
KA. #ign, 27 ek B IURSER ot ERMEIF T 0 R A FYELHS . System IIT 1
System V & JURSKIR = T A XERRA . MM KEAERIREMUREHREKEE
7R, EE B UCB 4.x BSD. 4, HIFE M 7 BIRA MR, $552H7E
/NEITH R RRUAS

BRINMREMAESFRATAHEEFRE, RN XM 2R R RERAN
B HAR RIS TR R A R AR, (B TR, RITERFEHE 7
R ORRI, BB T KRS 2P UNIX REMHEM. BATEEN
JRSEU = W) System V F1 Berkeley 4.1 BSD _HiafT T HHHHF. AEVRFIPL2EH
HIRA A MRA, #ESRIZERMRD.

HR, BRABHAREE, BREAR—ASEFMN. RINEHAEEENE
AP VER — P E R R, AR BA. (UNIX F2/F AT 2E BRFRUE
K. MEBEAEKRTHBRBIIEENHAOANSE, REHERBERANARSS
REMER.

BJE, BATVMGRFNFEITEREER. ABNRALSN LR, XHEMRR
AIBURSK: . RAEEE RN E, BWRERBBMEBNL. DR, R—T, RE
BIEHKARE.

BATHE, UNIX RAREFHAxwE, BIHE—ADAHEMOIHETRE, RINFEE

=
m

PRe R RIXH T R =R .

BNZREENAPRHUTREES DR, BRI 0 B0 R
IRACRB ATt I DT8R 45 /2R 14f Jon Bentley. John Linderman. Doug Mcllroy F1
Peter Weinberger 1A B Hb 7 B A 45 BRI 2 MR A . K Al Aho. Ed Bradford, Bob
Flanrena. Dave Hanson. Ron Hardin. Marion Harris. Gerard Holzmann, Steve Johnson.
Nico Lomuto, Bob Martin, Larry Rosler. Chris Van Wyk 1 Jim Weythman % 55 —%
12 H & . FATEE KB Mike Bianchi., Elizabeth Bimmler. Joe Carfagno. Don Carter.
Tom De Marco. Tom Duff, David Gay. Steve Mahaney. Ron Pinter. Dennis Ritchie.
Ed Sitar. Ken Thompson. Mike Tilson. Paul Tukey F! Larry Wehr 32 i 5 81818,

Brian Kernighan
Rob Pike

1. UNIX for Beginners
1.1 Getting started
1.2 Day-to-day use: files and common commands
1.3 More about files: directories
1.4 The shell
1.5 The rest of the UNIX system

2, The File System
2.1 The basics of files
2.2 What’s in a file?
2.3 Directories and filenames
2.4 Permissions
2.5 Inodes
2.6 The directory hierarchy
2.7 Devices

3. Using the Shell
3.1 Command line structure
3.2 Metacharacters
3.3 Creating new commands
3.4 Command arguments and parameters
3.5 Program output as arguments
3.6 Shell variables
3.7 More on I/O redirection
3.8 Looping in shell programs
3.9 bundle: putting it all together
3.10 Why a programmable shell?

4. Fiiters
4.1 The grep family
4.2 Other filters

CONTENTS

11
21
26
38

41
41

48
52
57
63
65

n
71
74
80
82
86
88
92

101
102
106

4.3
4.4
45

The stream editor sed
The awk pattern scanning and processing language
Good files and good filters

s. Shell Programming

5.1
5.2
53
54
55
5.6
5.7
5.8
59

Customizing the cal command

Which command is which?

while and until loops: watching for things
Traps: catching interrupts

Replacing a file: overwrite

zap: killing processes by name

The pick command: blanks vs. arguments

The news command: community service messages
get and put: tracking file changes

5.10 A look back

6. Programming with Standard 1O

6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

1 Standard input and output: vis

Program arguments: visg version 2

File access: wvis version 3

A screen-at-a-time printer: p

An example: pick

On bugs and debugging

An example: zap

An interactive file comparison program: idiff
Accessing the environment

7. UNIX System Calls

7.1
7.2
7.3
7.4
7.5

Low-level /O

File system: directories
File system: inodes
Processes

Signals and interrupts

8. Program Development

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

Stage 1: A four-function calculator

Stage 2: Variables and error recovery

Stage 3: Arbitrary variable names; built-in functions
Stage 4: Compilation into a machine

Stage 5: Control flow and relational operators

Stage 6: Functions and procedures; input/output
Performance evaluation

A look back

CONTENTS

108
114
130

133
133
138
144
150
152
156
159
162
165
169

17
172
174
176
180
186
187
190
192
199

201
201
208
214
220
225

233
234
242
245
258
266
273
284
286

CONTENTS

9.

10.

Document Preparation
9.1 The ms macro package
9.2 The troff level
9.3 The tbl and eqn preprocessors
9.4 The manual page
9.5 Other document preparation tools

Epilog

Appendix 1: Editor Summary
Appendix 2: hoc Manusl
Appendix 3: hoc Listing

Index

290
297
301
308
313

315
39
329
33s

349

cHAPTER I: UNIX FOR BEGINNERS

What is “UNIX"? In the narrowest sense, it is a time-sharing operating sys-
tem kernel: a program that controls the resources of a computer and allocates
them among its users. It lets users run their programs; it controls the peri-
pheral devices (discs, terminals, printers, and the like) connected to the
machine; and it provides a file system that manages the long-term storage of
information such as programs, data, and documents.

In a broader sense, “UNIX” is often taken to include not only the kernel,
but also essential programs like compilers, editors, command languages, pro-
grams for copying and printing files, and so on.

Still more broadly, “‘UNIX” may even include programs developed by you or
other users to be run on your system, such as tools for document preparation,
routines for statistical analysis, and graphics packages.

Which of these uses of the name “UNIX" is correct depends on which level
of the system you are considering. When we use “UNIX" in the rest of this
book, context should indicate which meaning is implied.

The UNIX system sometimes looks more difficult than it is — it’s hard for a
newcomer to know how to make the best use of the facilities available. But
fortunately it’s not hard to get started — knowledge of only a few programs
should get you off the ground. This chapter is meant to help you to start using
the system as quickly as possible. It’s an overview, not a manual; we’ll cover
most of the material again in more detail in later chapters. We’ll talk about
these major areas:

e basics — logging in and out, simple commands, correcting typing mistakes,
mail, inter-terminal communication.

e day-to-day use — files and the file system, printing files, directories,
commonly-used commands.

e the command interpreter or shell — filename shorthands, redirecting input
and output, pipes, setting erase and kill characters, and defining your own
search path for commands.

If you’ve used a UNIX system before, most of this chapter should be familiar;
you might want to skip straight to Chapter 2.

1

2 THE UNIX PROGRAMMING ENVIRONMENT CHAPTER 1

You will need a copy of the UNIX Programmer’s Manual, even as you read
this chapter; it’s often easier for us to tell you to read about something in the
manual than to repeat its contents here. This book is not supposed to replace
it, but to show you how to make best use of the commands described in it.
Furthermore, there may be differences between what we say here and what is
true on your system. The manual has a permuted index at the beginning that’s
indispensable for finding the right programs to apply to a problem; learn to use
it.

Finally, a word of advice: don't be afraid to experiment. If you are a
beginner, there are very few accidental things you can do to hurt yourself or
other users. So learn how things work by trying them. This is a long chapter,
and the best way to read it is a few pages at a time, trying things out as you
go.

1.1 Getting started
Some prerequisites about terminals and typing

To avoid explaining everything about using computers, we must assume you
have some familiarity with computer terminals and how to use them. If any of
the following statements are mystifying, you should ask a local expert for help.

The UNIX system is full duplex: the characters you type on the keyboard are
sent to the system, which sends them back to the terminal to be printed on the
screen. Normally, this echo process copies the characters directly to the
screen, so you can see what you are typing, but sometimes, such as when you
are typing a secret password, the echo is turned off so the characters do not
appear on the screen.

Most of the keyboard characters are ordinary printing characters with no
special significance, but a few tell the computer how to interpret your typing.
By far the most important of these is the RETURN key. The RETURN key sig-
nifies the end of a line of input; the system echoes it by moving the terminal’s
cursor to the beginning of the next line on the screen. RETURN must be
pressed before the system will interpret the characters you have typed.

RETURN is an example of a control character — an invisible character that
controls some aspect of input and output on the terminal. On any reasonable
terminal, RETURN has a key of its own, but most control characters do not.
Instead, they must be typed by holding down the CONTROL key, sometimes
called CTL or CNTL or CTRL, then pressing another key, usually a letter. For
example, RETURN may be typed by pressing the RETURN key or,
equivalently, holding down the CONTROL key and typing an ‘m’. RETURN
might therefore be called a control-m, which we will write as ctl-m. Other con-
trol characters include ctl-d, which tells a program that there is no more input;
ctl-g, which rings the bell on the terminal; ctl-h, often called backspace, which
can be used to correct typing mistakes; and ctl-i, often called tab, which

CHAPTER ! UNIX FOR BEGINNERS 3

advances the cursor to the next tab stop, much as on a regular typewriter. Tab
stops on UNIX systems are eight spaces apart. Both the backspace and tab char-
acters have their own keys on most terminals.

Two other keys have special meaning: DELETE, sometimes called RUBOUT
or some abbreviation, and BREAK, sometimes called INTERRUPT. On most
UNIX systems, the DELETE key stops a program immediately, without waiting
for it to finish. On some systems, ctl-c provides this service. And on some
systems, depending on how the terminals are connected, BREAK is a synonym
for DELETE or ctl-c.

A Session with UNIX

Let’s begin with an annotated dialog between you and your UNIX system.
Throughout the examples in this book, what you type is printed in slanted
letters, computer responses are in typewriter-style characters, and
explanations are in italics.

Establish a connection: dial a phone or turn on a switch as necessary.

Your system should say

login: you Type your name, then press RETURN
Password: Your password won't be echoed as you type it
You have mail. There's mail 1o be read qafter you log in

$ The system is now ready for your commands
$ Press RETURN a couple of times

$ date What's the date and time?

Sun Sep 25 23:02:57 EDT 1983

$ who Who's using the machine?

jlb tty0 Sep 25 13:59

you tty2 Sep 25 23:01

mary ttyd Sep 25 19:03

doug tty5 Sep 25 19:22

egb tty? Sep 25 17:17

bob ttys Sep 25 20:48

$ mail Read your mail

From doug Sun Sep 25 20:53 EDT 1983
give me a call sometime monday

? RETURN moves on to the next message
From mary Sun Sep 25 19:07 EDT 1983 Next message
Lunch at noon tomorrow?

?d Delete this message

$ No more mail

$ mail mary Send mail to mary

lunch at 12 is fine

ctl-d End of mail

$ Hang up phone or turn off terminal
and that's the end

Sometimes that’s all there is to a session, though occasionally people do

4 THE UNIX PROGRAMMING ENVIRONMENT CHAPTER 1

some work too. The rest of this section will discuss the session above, plus
other programs that make it possible to do useful things.

Logging in

You must have a login name and password, which you can get from your
system administrator. The UNIX system is capable of dealing with a wide
variety of terminals, but it is strongly oriented towards devices with lower case;
case distinctions matter! If your terminal produces only upper case (like some
video and portable terminals), life will be so difficult that you should look for
another terminal.

Be sure the switches are set appropriately on your device: upper and lower
case, full duplex, and any other settings that local experts advise, such as the
speed, or baud rate. Establish a connection using whatever magic is needed
for your terminal; this may involve dialing a telephone or merely flipping a
switch. In either case, the system should type

login:

If it types garbage, you may be at the wrong speed; check the speed setting and
other switches. If that fails, press the BREAK or INTERRUPT key a few times,
slowly. If nothing produces a login message, you will have to get help.

When you get the login: message, type your login name in lower case.
Follow it by pressing RETURN. If a password is required, you will be asked
for it, and printing will be turned off while you type it.

The culmination of your login efforts is a prompt, usually a single charac-
ter, indicating that the system is ready to accept commands from you. The
prompt is most likely to be a dollar sign $ or a percent sign %, but you can
change it to anything you like; we’'ll show you how a little later. The prompt is
actually printed by a program called the command interpreter or shell, which is
your main interface to the system.

There may be a message of the day just before the prompt, or a notification
that you have mail. You may also be asked what kind of terminal you are
using; your answer helps the system to use any special properties the terminal
might have.

Typing commands

Once you receive the prompt, you can type commands, which are requests
that the system do something. We will use program as a synonym for com-
mand. When you see the prompt (let’s assume it's 8), type date and press
RETURN. The system should reply with the date and time, then print another
prompt, so the whole transaction will look like this on your terminal:

$ date
Mon Sep 26 12:20:57 EDT 1983
]

Don’t forget RETURN, and don't type the 8. If you think you're being

CHAPTER 1 UNIX FOR BEGINNERS 5

ignored, press RETURN; something should happen. RETURN won't be men-
tioned again, but you need it at the end of every line.

The next command to try is who, which tells you everyone who is currently
logged in:

$ who

rlm tty0 Sep 26 11:17
piw tty4 Sep 26 11:30
gerard tty?7 Sep 26 10:27
mark tty9 Sep 26 07:59
you ttya Sep 26 12:20
$

The first column is the user name. The second is the system’s name for the
connection being used (“tty” stands for “teletype,”” an archaic synonym for
“terminal’’). The rest tells when the user logged on. You might also try

$ who am 1
you ttya Sep 26 12:20
$

If you make a mistake typing the name of a command, and refer to a non-
existent command, you will be told that no command of that name can be
found:

$ whom Misspelled command name ...
whom: not found ... S0 System didn't know how to run it
$

Of course, if you inadvertently type the name of an actual command, it will
run, perhaps with mysterious results.

Strange terminal behavior

Sometimes your terminal will act strangely, for example, each letter may be
typed twice, or RETURN may not put the cursor at the first column of the next
line. You can usually fix this by turning the terminal off and on, or by logging
out and logging back in. Or you can read the description of the command
stty (“set_terminal options™) in Section 1 of the manual. To get intelligent
treatment of tab characters if your terminal doesn’t have tabs, type the com-
mand

$ gtty -tabs

and the system will convert tabs into the right number of spaces. If your ter-
minal does have computer-settable tab stops, the command tabs will set them
correctly for you. (You may actually have to say

$ tabs terminal-type

to make it work — see the tabs command description in the manual.)

6 THE UNIX PROGRAMMING ENVIRONMENT CHAPTER 1

Mistakes in typing

If you make a typing mistake, and see it before you have pressed RETURN,
there are two ways to recover: erase characters one at a time or kill the whole
line and re-type it.

If you type the line kill character, by default an at-sign @, it causes the
whole line to be discarded, just as if you’d never typed it, and starts you over
on a new line:

$ ddtae@® Completely botched; start over
date on a new line

Mon Sep 26 12:23:39 EDT 1983

$

The sharp character # erases the last character typed; each # erases one
more character, back to the beginning of the line (but not beyond). So if you
type badly, you can correct as you go:

$ dd#atte##e Fix it as you go
Mon Sep 26 12:24:02 EDT 1983
$

The particular erase and line kill characters are very system dependent. On
many systems (including the one we use), the erase character has been changed
to backspace, which works nicely on video terminals. You can quickly check
which is the case on your system:

$ datee« Try «
datee+: not found It's not «
$ datee# Try #
Mon Sep 26 12:26:08 EDT 1983 Itis#

$

(We printed the backspace as « so you can see it.) Another common choice is
ctl-u for line kill.

We will use the sharp as the erase character for the rest of this section
because it’s visible, but make the mental adjustment if your system is different.
Later on, in “tailoring the environment,” we will tell you how to set the erase
and line kill characters to whatever you like, once and for all.

What if you must enter an erase or line kill character as part of the text? If
you precede either # or @ by a backslash \, it loses its special meaning. So to
enter a # or @, type \# or \@. The system may advance the terminal’s cursor
to the next line after your @, even if it was preceded by a backslash. Don’t
worry — the at-sign has been recorded.

The backslash, sometimes called the escape character, is used extensively to
indicate that the following character is in some way special. To erase a
backslash, you have to type two erase characters: \##. Do you see why?

The characters you type are examined and interpreted by a sequence of pro-
grams before they reach their destination, and exactly how they are interpreted

