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INTRODUCTION

Expository books on the theory of Lie groups generally confine
themselves to the local aspect of the theory. This limitation was
probably necessary as long as general topology was not yet sufficiently
well elaborated to provide a solid base for a theory in the large. These
days are now passed, and we have thought that it would be useful to
have a systematic treatment of the theory from a global point of view.
The present volume introduces the main basic principles which govern
the theory of Lie groups.

A Lie group is at the same time a group, a topological space and a
manifold: it has therefore three kinds of ‘‘structures,” which are
interrelated with each other. The elementary properties of abstract
groups are by now sufficiently well known to the general mathematical
public to make it unnecessary for such a book as this one to contain a
purely group-theoretic chapter. The theory of topological groups,
however, has been included and is treated in Chapter II. The great-
est part of this chapter is concerned with the theory of covering spaces
and groups, which is developed independently from the theory of
paths. Chapter III is concerned with the theory of (analytic) mani-
folds (independently of the notion of group). Our definition of a
manifold is inspired by the definition of a Riemann surface given by
H. Weyl in his book ‘“Die Idee der Riemannschen Flache”; it has,
compared with the definition by overlapping system of coordinates, the
advantage of being intrinsic. The theory of involutive systems of
differential equations on a manifold is treated not only from the local
point of view but also in the large. In order to achieve this, a defini-
tion of the submanifolds of a manifold is given according to which a
submanifold is not necessarily a topological subspace of the manifold
in which it is imbedded.

The notions of topological group and manifold are combined
together in Chapter IV to give the notions of analytic group and Lie
group. An analytic group is a topological group which is given a
priori as a manifold; a Lie group (at least when it is connected) is a
topological group which can be endowed with a structure of manifold
in such a way that it becomes an analytic group. It is shown that, if
this is possible, the manifold-structure in question is uniquely deter-
mined, so that connected Lie groups and analytic groups are in reality
the same things defined in different ways. We shall see however in
the second volume that the difference becomes a real one when complex
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viii . INTRODUCTION

analytic groups are considered instead of the real ones which are
treated here.

Chapter V contains an exposition of the theory of exterior differen-
tial forms of Cartan which plays an essential role in the general
theory of Lie groups, as well in its topological as in its differential
geometric aspects. This theory leads in particular to the construction
of the invariant integral on a Lie group. In spite of the fact that this
invariant integration can be defined on arbitrary locally compact
groups, we have thought that it is more in the spirit of a treatise on Lie
groups to derive it from the existence of left invariant differential
forms.

Chapter VI is concerned with the general properties of compact
Lie groups. The fundamental fact is of course contained in the state-
ment of Peter-Weyl's theorem which guarantees the existence of
faithful linear representations. We have also included a proof of
the generalization by Tannaka of the Pontrjagin duality theorem. A
slight modification of the original proof of Tannaka shows that a
compact Lie group may be considered as the set of real points of an
algebraic variety in a complex affine space, the whole variety being
itself a Lie group on which complex coordinates can be introduced.

The second volume of this book, now in preparation, will be mainly
concerned with the theory and classification of semi-simple Lie Groups.

In preparing this book, I have received many valuable suggestions
from several of my friends, in particular from Warren Ambrose,
Gerhardt Hochschild, Deane Montgomery and Hsiao Fu Tuan. Iwas
helped in reading the proofs by John Coleman and Norman Hamilton.
I have also received precious advice from Professor H. Weyl and
Professor S. Lefschetz. To all of them I am glad to express here my
deep gratitude.

C. C
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Some Notations Used in This Book

I. We denote by ¢ the empty set, by {a} the set composed of the
single element a.
If f is & mapping of a set 4 into a set B, and if X is a sub-set of B,
-1

we denote by f (X) the set of the elements aeA such that f(a)eX. Ifg
is a mapping of B into a third set C, we denote by g 0 f the mapping
which assigns to every aed the element g(f(a)).

We use the signs \, 7 to represent respectively the intersection
and the union of sets. If E, is a collection of sets, the index « running
over a set 4, we denote by U E. the union of all sets E, and by
(Yaea Ea their intersection. We denote by é,; the Kronecker symbol,
equal to 1if ©+ = j and to 0 if 7 = j.

II. If G is a group, we call ‘“neutral element’ the element ¢ of G
such that e¢ = o for every oeG.

We say that a sub-group H of G is ““distinguished ” if the conditions
o€, reH imply ror—leH.

If ¢ = (a;) represents a matrix, the symbol E] = |a,j| stands for the
determinant of the matrix; dps stands for the trace of the matrix.

If M, N are vector spaces over the same field K, we call product
of M and N, and denote by M X N, the set of the pairs (e, f) with
e, feN, this set being turned in a vector space by the conventions

(e,f) + (e, f) = (e + €,f+f)
a(e, f) = (ae, af) for aeK.

III. Topology. We call topological spaces only the spaces in which
Hausdorf separation axiom is satisfied.

A neighbourhood of a point p in space B is understood to be a set
N such that there exists an open set U such that p6U ( N; N need
not be open itself.

The adherence 4 of a set A in a topological space is the set of
those points p such that every neighbourhood of p meets A. Every
point of A is said to be adherent to A. We shall make use of the
possibility of defining the topology in a space by the operation A — 4
of adherence (cf. Alexandroff-Hopf, T'opologie, Kap. 1)

Intervals. If a and b are real numbers such that a < b, we denote
by la, b[ the open interval of extremities a and b. We set Ja, b] =
la, b U (b}, [a, b[ = la, b] U {a}, g, b] = ]a, }[ U {a} w {b}.



CONTENTS

INTRODUCTION. . . . . . . . . . . . . v o oo vii
I. TE CrassicAL LINEAR GROUPS. . . . . . . . . . . . . 1
II. TopoLoGICAL GROUPS . . . . . . . . . . . . . . . .. 25
III. MANIFOLDS. . . . . . . . . . . . « . . . . .. 68
IV. ANavLytic Groups. LIEGrOUPS . . . . . . . . . . .. 99
V. THE DiFrerenTIAL CALCULUS OF CARTAN . . . . . . . . 139
VI. Compact L1 Grouprs AND THEIR REPRESENTATIONS. . . . 171
215



CHAPTER I
The Classical Linear Groups

Summary. Chapter I introduces the classical linear groups whose study
is one of the main objects of Lie group theory. The unitary and orthogonal
groups are defined in §I, together with a series of other groups. Their funda-
mental property of being compact is established.

Section II is concerned with the study of the exponential of a matrix.
The property for a matrix of being orthogonal or unitary is defined by a
system of non-linear relationships between its coefficients; the exponential
mapping gives a parametric representation of the set of unitary (or orthogonal)
matrices by matrices whose coefficients satisfy linear relations (Cf. Proposi-
tion 5, §II, p. 8). The reader may observe that the spaces M+, M, Ms,
ME which are introduced on p. 8 all contain YX — XY whenever they
contain X and Y. Although we could have given here an elementary expla-
nation of this fact, we have not done so, on account of the fact that the
full importance of this result can only be grasped much later (in Chapter IV).
In the cases of the orthogonal and unitary group, the linearization can also
be accomplished by the Cayley parametrization (which we have not intro-
duced); however, the exponential mapping is more advantageous from our
point of view because it preserves some properties of the ordinary exponential
function (Cf. Proposition 3, §IV, p. 13).

Sections IIT and IV are preliminary to the result which will be proved
in Section V (Proposition 1, p. 14). Hermitian matrices are defined in
terms of the unitary geometry in a complex vector space (unitary geometry
is defined by the notion of hermitian product of two vectors, just as euclidean
geometry can be defined in terms of the scalar product). Proposition 2, §III,
p. 10 shows that the unitary matrices are the isometric transformations of
a unitary geometry.

The proposition which asserts that the full linear group can be decomposed
topologically into the product of the unitary group and the space of positive
definite hermitian matrices (Proposition 1, §V, p. 14) is the prototype of the
theorems which allow us to derive topological properties of general Lie groups
from the properties of compact groups. A similar decomposition is given
for the complex orthogonal group (Proposition 2, §V, p. 15).

Sections VI and VII are preliminary to the definition of the symplectic
groups. The symplectic group is defined to be the group of isometric trans-
formations of a symplectic geometry (Definition 1, §VII, p. 20). In §IX, we
construct a representation of Sp(n) by complex matrices of degree 2n. The
consideration of the conditions which the matrices of this representation
must satisfy leads to the introduction of a new group, the complex symplectic
group Sp(n, C). It can be seen easily that Sp(n, C) stands in the same rela-
tion to Sp(n) as GL(n, C) to U(n) or as O(n, C) to O(n). A proposition
of the type of Proposition 1, §V, p. 14 could be derived without much diffi-
culty for Sp(n, C). However, we have not found it necessary to state this

1



2 THE CLASSICAL LINEAR GROUPS [CHaP. 1

proposition, which is contained as a special case of a theorem proved later
(Corollary to Theorem 5, Chapter VI, §XII, p. 211).

§I. THE FULL LINEAR GROUP AND SOME OF ITS SUBGROUPS

The n-dimensional complex cartesian space C* may be considered
as a vector space of dimension n over the field C' of complex numbers.
Let e; be the element of C* whose 7-th coordinate is 1 and whose other
coordinates are 0. The elements e;, - - - , e, form a base of C»
over C.

A linear endomorphism « of C* is determined when the elements
ae; = 2 ,a;e; are given. There corresponds to this endomorphism
a matrix (a:;) of degree n; we shall denote this matrix by the same
letter o as the endomorphism itself. Conversely, to any matrix of
degree n with complex coefficients, there corresponds an endomorphism
of C™,

Let « and B be two endomorphisms of C*, and let (ai;) and (b;)
be the corresponding matrices. Then a 0 8is again an endomorphism,
whose matrix (c;;) is the product of the matrices (a;;) and (by;); i.e.

(1) Cii = Zpa1@ikby;

We shall denote by 9.(C) the set of all matrices of degree n with
coefficients in C. If (a;;)eM.(C), we set bir—na = @i and we associate
with the matrix (a;;) the point of coordinates by, « - * , buin C*', We
obtain in this way a one-to-one correspondence between 91,(C) and
C*. Since C* is a topological space, we can define a topology in
IM.(C) by the requirement that our correspondence shall be a homeo-
morphism between 9,(C) and C*'.

Let € be any topological space, and let ¢ be a mapping of € into
MA(C). If te€, let ai;(f) be the coefficients of the matrix o(t). It is
clear that ¢ will be continuous if and only if each function a;;(t) is
continuous.

It follows immediately from this remark and from the formulas
(1) that the product or of two matrices o, 7 is a continuous function
of the pair (o, ), considered as a point of the space M, (C) X IM.(C).

If « = (ay;), we shall denote by ‘a the transpose of a, i.e. the matrix
(a;;), with aj; = a;z. We shall denote by & the complex conjugate
of a,i.e. the matrix @ = (d;;). It is clear that the mappings a — ‘a,
o — & are homeomorphisms of order 2 of 91,(C) with itself. If a« and
B are any two matrices, we have

“af) ='f'a  of = aB



§1] THE FULL LINEAR GROUP 3

A matrix ¢ will be called regular if it has an inverse, i.e., if there
exists a matrix ¢! such that so—! = ¢7'¢ = ¢, where ¢ is the unit
matrix of degree n. A necessary and sufficient condition for a matrix ¢

to be regular is that its determinant El be # 0.

If an endomorphism ¢ of C* maps C* onto itself (and not onto
some subspace of lower dimension), the corresponding matrix o is
regular and ¢ has a reciprocal endomorphism ¢~ :

If ¢ is a regular matrix, we have

o) = (o) ot =

If ¢ and 7 are regular matrices, o7 is also regular and we have

(er)t =111

It follows that the regular matrices form a group with respect
to the operation of multiplication.

Definition 1. The group of all regular matrices of degree n with
complex coefficients s called the general linear group. We shall denote
it by GL(n, C).

Since the determinant of a matrix is obviously a continuous func-
tion of the matrix, GL(n, C) is an open subset of 9M,(C). We may
consider the elements of GL(n, C) as points of a topological space,
which is a subspace of 9M,(C).

If ¢ = (a;;) is & regular matrix, the coefficients b; of ¢! are given
by expressions of the form

bs‘i = ASIH—I

where the A;’s are polynomials in the coefficients of ¢. It follows
that the mapping ¢ — ¢! of GL(n, C) onto itself is continuous. Since
this mapping coincides with its reciprocal mapping, it is a homeo-
morphism of order 2 of GL(n, C) with itself.

The mappings ¢ — & and ¢ — ‘¢ are homeomorphisms of GL(n, ()
with itself. The first but not the second is also an automorphism of
the group GL(n, C).

If ¢¢GL(n, C), we shall denote by ¢* the matrix defined by the
formula

0'* p— 00-—1
We have
(or)* = g*r* (0%)~! = (¢—1)*
Hence, the mapping ¢ — ¢* is a homeomorphism and an automorphism
of order 2 of GL(n, C).
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Definition 2. A matriz o is said to be orthogonal if ¢ = ¢ = o*.
The set of all orthogonal matrices of degree n will be denoted by O(n).
If only ¢ = o*, o 15 said to be complex orthogonal; the set of these matrices
will be denoted by O(n, C). Ifonly & = o*, o is said to be unitary. The
set of all unitary matrices will be denoted by U(n).

Since the mappings ¢ — & and ¢ — ¢* are continuous, the sets
O(n), O(n, C) and U(n) are closed subsets of GL(n, C). Because
these mappings are automorphisms, O(n), O(n, C) and U(n) are sub-
groups of GL(n, C). We have clearly

O(n) = O(n, C) ™ U(n).

Definition 3. We shall say that the mairiz o s real if its coefficients
are real, i.e. if o = & The set of all real matrices of degree n will be
denoted by M.(R). The set M, (R) NGL(n, C) will be denoted by
GL(n, R).

Therefore, we have also

O(n) =GL(n, R) M 0(n, C)

The determinant of the product of two matrices being the product
of the determinants of these matrices, it follows that the matrices of
determinant 1 form a subgroup of GL(n, C).

Definition 4. The group of all matrices of determinant 1 in GL(n, C)
ts called the special linear group. This group s denoted by SL(n, C).
We set SL(n, R) = SL(n, C) N GL(n, R); SO(n) = SL(n, C) ™ 0(n);
SU(n) = SL(n, C) M U(n).

It is clear that SL(n, C), SL(n, R), SO(n), SU(n) are subgroups
and closed subsets of GL(n, C). They may be considered as subspaces
of GL(n, C).

Theorem 1. The spaces U(n), O(n), SU(n) and SO(n) are compact.

Since O(n), SU(n) and SO(n) are closed subsets of U(n), it is
sufficient to prove that U(n) is compact. A matrix ¢ is unitary if
and only if ‘s@ = ¢, where ¢ is the unit matrix (in fact, this condition
implies that ¢ is regular and that ¢* = #). If ¢ = (ay;), the equation
73 = eis equivalent to the conditions

208Gk = Oik
Since the left sides of these equations are continuous functions
of ¢, U(n) is not only a closed subset of GL(n, C) but also of 9M.(C).
Moreover, the conditions Z;axd; = 1 imply |ag| < 1(1 £ ¢, j < n).
It follows that the coefficients of a matrix ¢€U(n) are bounded. If we
take into account the homeomorphism established between 9,(C)
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and C', we see that U(n) is homeomorphic to a closed bounded subset
of C*'. Theorem 1 is thereby proved.

§II. THE EXPONENTIAL OF A MATRIX

Let « be any matrix of degree n, and let 4 be an upper bound
for the absolute values of the coefficients z;;(a) of a. Let z{?’(a) be
the coefficients of a?(0 £ p < ; we set a® = ¢ = the unit matrix).
We assert that |z{”(e)| £ (nu)?. This is true for p = 0. Assume
that our inequality holds for some integer p 2> 0; then

2P0 (a)| = |2 (@)zii(e)| € n(np)?u = (nu)7+
which proves that the inequality holds for p 4 1.

It follows that each of the n? series Z2_ pl 7P (a) converges uni-
formly on the set of all a such that |z;j(e)| € u. In other words, the
series e + % + g; + ~&= £ 5;;: + - - - is always convergent, and
uniformly so when « remains in a bounded region of the set 91,(C).

Definition 1. We denote by exp a the sum of the series =g ;}1—' a’.

The function exp a is thus defined and continuous on 9M,(C) and
maps M. (C) into itself.
Proposition 1. If ¢ is a regular matriz of degree n, then

exp (cas™') = o(exp a)o™!
In fact, we have cga?s~! = (sac~')?, and hence exp (cac!) =

E?%T (cac™)? = 290 (51-' a’) al=g¢ (2‘(’," 517 a") o' = a(exp a)ot.

Proposition 2. If Ny, - - - , s are the characteristic roots of a, each
occurring a number of times equal to its multiplicily, the characteristic
roots of exp a are exp Ay, * * * , eXp An.

We shall prove this by induction on n. It is obvious for n = 1,
because then a is a complex number. Now, assume that » > 1 and
that the proposition holds for matrices of degree n — 1.

Let A\, be a characteristic root of a; then there is an element a > 0
in C" such that «a = \a. Let e, be the point whose coordinates are
1,0, ---,0. Because a # 0, there exists a regular matrix o such
that ca = e;. Then cas—'e; = \e,; in other words,
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where the *'s indicate complex numbers and & is a matrix of degree
n — 1. We have

gaPe! = | . (@)

0
and therefore

exp (cas™!) = (exp &)

0
If Ny, * + -, N, are the characteristic roots of &, those of @, which
are the same as those of cao™!, are A\;, Az, © * *+ , A\o. The proposition
being true for matrices of degree n — 1, it follows that the character-
istic roots of exp & are exp Xg, - + , exp A, and those of exp (cac™)
are exp A1, €xp Ay, * * -, exp A.. But these are also the character-
istic roots of o(exp a)o~! (Cf. Proposition 1) and hence of exp a.
roposition 2 is thereby proved.
Corollary 1. The determinant of the matriz exp a 18 exp Sp a.
This follows at once from the facts that the trace and the deter-
minant of a matrix are respectively the sum and the product of the
characteristic roots.
Corollary 2. The exponential of any matriz is a regular matriz.
Proposition 3. If « and B are permutable matrices (i.e. if af = fa)
then exp (a 4+ B) = (exp a)(exp B).
Since « and B are permutable, we can expand (a + B8)? by the
binomial formula:
» o ﬁp—k

1
P—!(a-‘-B)P:EoH(p—k)!



