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FOREWORD

The basic notions of the theory of Hilbert space are current in many parts of
pure and applied mathematics, and in physics, engineering and statistics.
They are well worth a place in any honours mathematics course, and
Chapters 1 to 8 of this book aim to present them in a way accessible to
undergraduate students. A course in Hilbert space is likely to be the last
analysis course for many students, and it should therefore be able to stand
on its own: it should not depend for its motivation on further study of
abstract analysis, but should as far as possible have a value which is
apparent either on aesthetic grounds or for its scientific or practical
applications. For this reason I have included more historical and
background material than is customary, and have omitted some of the
major theorems about Banach spaces which are traditionally taught in
introductory courses on functional analysis, but which are really more
appropriate to students who will be pursging operator theory further (the
closed graph, Hahn-Banach and uniform boundedness theorems). The
second half of the book describes two substantial applications. One of these
is standard: the Sturm-Liouville theory of eigenfunction expansions, and
its role in the solution of the partial differential equations of mathematical
physics by the method of separation of variables. The other (in Chapters 12
to 16) is less common, but is nevertheless ideal for a final year course. It is
beautiful mathematics, it is relatively recent and visibly useful. It also
entails the development of some standard operator theory along the way,
and exhibits very well the connection between abstract analysis and the
more classical field of complex analysis.

Although the book was written primarily for an undergraduate
audience, I hope it may be found useful for graduate courses also. I firmly
believe that functional analysis is best approached through a sound
grounding in Hilbert space theory, and am confident that students will be



better able to benefit from one of the many excellent advanced texts on
functional analysis and its applications if they first master the material
contained herein. Chapters 12 to 16 may also be of interest to some
electrical engineers. Some recent developments, particularly in control and
filter design, require familiarity with this aspect of operator theory.

Chapters 1 to 8 are based on a compulsory course of twenty lectures
which I gave to third year honours students at Glasgow University, and the
remainder of the book, with a few omissions, on an optional twenty lecture
course for fourth year students. In forty lectures at the undergraduate level
it should be possible to cover the whole book except for the Adamyan-
Arov—Krein theorem and the proofs of Fatou’s theorem and the existence
of square roots of positive operators. Chapters 12 to 16 do not depend on
Chapters 9 to 11: they can be read straight after Chapter 8.

The book presupposes introductory courses in real analysis, linear
algebra and topology (metric spaces suffice). For Chapters 12 to 16, and
some of the problems earlier in the book, elementary complex analysis is
required. It is tacitly assumed in Chapters 9 to 11 that the reader has met
differential equations before, though formal requirements are slight. I have
taken pains not to assume knowledge of the Lebesgue integral : the reader is
asked only to believe that there is a definition of integral which makes
[*(a, b) complete and the continuous functions a dense subspace. However,
I am obliged to admit that there are parts of Chapter 13 which will feel
distinctly more comfortable to those who are familiar with Lebesgue
measure.

I am grateful to Dr Frances Goldman and Dr Philip Spain for reading
the text and making useful suggestions. I am also very thankful that,
despite the all-conquering march of the word processor, Cambridge
University Press was willing to accept manuscript, so that I do not have to
thank anyone for his excellent typing.
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INTRODUCTION

Functional analysis is a branch of mathematics which uses the intuitions
and language of geometry in the study of functions. The classes of functions
with the richest geometric structure are called Hilbert spaces, and the
theory of these spaces is the core around which functional analysis has
developed. One can begin the story of this development with Descartes’
idea of algebraicizing geometry. The device of using co-ordinates to turn
geometric questions into algebraic ones was so successful, for a wide but
limited range of problems, that it dominated the thinking of
mathematicians for well over a century. Only slowly, under the stimulus of
mathematical physics, did the perception dawn that the correspondence
between algebra and geometry could also be made to operate effectively in
the reverse direction. It can be useful to represent a point in space by a triple
of numbers, but it can also be advantageous, in dealing with triples of
numbers, to think of them as the co-ordinates of points in space. This might
be termed the geometrization of algebra: it enables new concepts and
techniques to be derived from our intuition for the space we live in. It is
regrettable that this intuition is limited to three spatial dimensions, but
mathematicians have not allowed this circumstance to prevent them from
using geometric terminology in handling n-tuples of numbers when n > 3.
In the context of R" one routinely speaks of points, spheres, hyperplanes
and subspaces. Though such language comes to seem very natural to us, it
still depends on analogy, and we must have recourse to algebra and
analysis to verify that our analogies are valid and to determine which
analogies are useful.

Once the geometric habit of mind was established in relation to R" it was
natural to extend it to other common objects of mathematics which enjoy a
similar linear structure, such as functions and infinite sequences of real
numbers. This is a bolder leap into the unknown, and we must expect that



2 An introduction to Hilbert space

our intuition for physical space will prove a shakier guide than it was for R".
Indeed, the task of sorting out the right basic concepts in the geometry of
infinite-dimensional spaces preoccupied leading analysts for some decades
around the turn of the century. Thereafter the geometric viewpoint proved
its worth, and came to provide the backdrop for the greater part of modern
work in differential and integral equations, quantum mechanics and other
disciplines to which mathematics is applied.

The study of differential and integral equations arising in physics was
one of the main impulses to the emergence of functional analysis. A
precursor of the subject can be seen in attempts by several mathematicians
to treat such equations as limits in some sense of finite systems of equations.
This approach had fair success, particularly in the hands of Hilbert, and it
still has plenty of life in the domain of numerical analysis. Suppose, for
example, one wishes to solve the integral equation

1
J K(x,y)f(y)dy=g(x).
(4]

Here K and g are known continuous functions on [0, 1] x [0, 1] and [0, 1]
respectively, and one is looking for a continuous solution f. It seems
natural to approximate this system by the finite system

n—1 . .
b3 K<£yl>f,n-~l =g<i),
<o \nn n n
i=0,1,...,n— 1. Assuming that this system of n linear equations in the n
unknowns f,, ..., f,_, , has a unique solution, one might expect that, for
large n, f;, ought to be close to f(j/n), at least under further conditions on
K and g.

Hilbert was by no means the first to use this device. Fourier himself was
led to introduce Fourier series in a rather similar way. In studying the
conduction of heat he encountered the differential equation

v 3*v

Ox? +W=O’

subject to certain boundary conditions. By the method of the separation of
variables he derived the solution

Vix,y)= Y ane " Yxcos(2m— 1)y,

m=1

where the coefficients a,, are determined by the infinite system of linear
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equations

a,=1,

.—Mg

S (2m - 1)%a, = 0,

(2m — 1)*a,, =0,

_Mg -

Fourier handled these by taking the first k equations and truncating them
to k terms. This gives a k x k system which has a solution al®, . .. ,a{®. On
letting k — oc Fourier obtained the desired solution of the infinite system.

Although this trick often worked, it has its dangers. Consider the infinite
system

xl+X2+x3+'--=1,
X+ x3+--=1,

XJ+"'=1,

No choice of the x; will satisfy this system, yet Fourier’s limiting procedure
would yield the apparent solution x; =0 for all j.

By virtue of powerful technique and a perception of what was important,
Hilbert was able to make great contributions using this idea. Nevertheless,
mathematicians came to regard the method as inadequate. It is clumsy and
notationally complicated. The procedure of passage to the limit is difficult,
and, indeed, it has been asserted that Hilbert did not always accomplish it
correctly (see Reid, 1970). He himself did not arrive at the modern
geometric viewpoint: Hilbert never used ‘Hilbert space’. It was other
mathematicians, particularly Erhardt Schmidt and Frigyes Riesz, who
reflected on his results and discovered the right conceptual framework for
them. Thereby they created a simpler, more elegant and more powerful
theory. In this one does not try to reduce essentially infinite-dimensional
questions to finite-dimensional geometry and then ‘let n — ¢ ’: instead one
develops the geometry of the objects of analysis as they naturally occur,
using the familiar finite-dimensional geometry rather as a guide and
analogy.
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Inner product spaces

Some important metric notions such as length, angle and the energy of
physical systems can be expressed in terms of the inner product (x,y) of
vectors x, y€C". This is defined by

=2 x ¥, (LY

=1

where x = (x,,...,X,), y=1(¥1,---,ya), and y; is the complex conjugate of
y;- We wish to construct an infinite-dimensional version of this inner
product. The most obvious attempt is to consider the space C™ of all
complex sequences indexed by N. This is a complex vector space in a
natural way, but it is not clear how we can extend the notion of inner
product to it. If we replace the finite sum in (1.1) by an infinite one then the
series will fail to converge for many pairs of sequences. We therefore restrict
attention to a subspace of CV.

1.1 Definition /* denotes the vector space over C of all complex
sequences x = (x,)>, which are square summable, that is, satisfy

a0
Y |xlP< x,
n=1

with componentwise addition and scalar multiplication, and with inner
product given by

)= 3 Xu Vs (1.2)

n=1
where x = (x,), y = (y,). O
‘Componentwise’” means the following: if x = (x,), y = (y,)€/*and 1eC
then

@

x+.v=(xn+yn)n=l*

Ax = (Ax,)=. ;.
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Let us check that this definition of inner product does make sense. Using
the Cauchy-Schwarz inequality we find, for ke N,

k k

2 |xadl = 2 |xllil

L iR
<{ T L E i

If (x,) and (y,) are square summable sequences then the latter expression is
a finite number independent of k. Thus the series (1.2) converges absolutely,
and so (x, y) is defined by (1.2) as a complex number for any x, ye /2.
It is obvious that /2 is closed under scalar multiplication but less so that
it is closed under addition: we defer the proof of this to Exercise 1.12 below.
Let us make precise what it means to say that C" and /? are spaces with
an inner product.

N
™Ms Ip> -
T

=
32

1.2 Definition An inner product (or scalar product) on a complex vector
space V is a mapping
(', ):VxV->C
such that, for all x,y,zeV and all AeC,
@) (x,y)=(y,x)7;
(i) (4x, y) = A(x, y);
() (x+y,2)=(x,2) +(y,2);
(iv) (x,x)>0 when x #0.
An inner product space (or pre-Hilbert space) is a pair (V, (-, -)) where Visa
complex vector space and (-, -) is an inner product on V. O
It is routine to check that the formulae (1.1) and (1.2) do define inner
products on C" and /2 in the sense of Definition 1.2. There are many other
inner product spaces which arise in analysis, most of them having inner
products defined in terms of integrals.

1.3 Exercise Show that the formula

o
(f,y)=f S()g() de
o

defines an inner product on the complex vector space C[0, 1] of all
continuous C-valued functions on [0, 1], with pointwise addition and
scalar multiplication. O
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1.4 Exercise Show that the formula
(A, B) = trace(B* A)

defines an inner product on the space C™*" of m x n complex matrices,
where m,neN and B* denotes the conjugate transpose of B. O

The conditions (ii) and (iii) in the definition of inner product are often
summarized by the statement that (-, -) is linear in the first argument. It
follows from the definition that it is also conjugate linear in the second
argument: this means that it satisfies (i) and (ii) of the following.

1.5 Theorem For any x, y,z in an inner product space V and any 1eC,
1) x,y+2)=(x, )+ (x,2);
(ii) (x,Ay)=Alx,y);
(iii) (x,0)=0=(0,x);
(iv) if (x,2z) = (y,z) for all ze V then x = y.
Proof. (i) Using Definition 1.2(i) and (iii) we have
(x,y+2)=(y+2zx)”
=[(y,x)+(z,x)]~
=(yx)" +(z.x)"
= (x, y) + (x,2).
The proof of (ii) is similar. To prove (iii) put A =0 in (ii).
(iv) If (x,2)=(y, z) then
0=(x,2) +(=D(y,2)
=(x,2)+(-y,2)=(x—y,2).
If this holds for all ze V then in particular it holds when z = x — y; thus
(x —y,x —y)=0. By 1.2(iv) it follows that x — y =0. O

1.1 Inner product spaces as metric spaces

In the familiar case of R> the magnitude |u| of a vector u is equal to
(u,u)''*, and the Euclidean distance between points with position vectors
u,v is |u—v|. We copy this to introduce a natural metric in an inner
product space.

)1/2

1.6 Definition The norm of a vector x in an inner product space is defined
to be (x,x)"2. It is written |x|. ]
Thus, for x = (x,,...,x,)€C" we have

Ixll = (xf* +-- - + [xa )2,
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while for fe€C[0, 1], with the inner product described in Exercise 1.3,

Irl= { f l lf(r)l’dt}m-

1.7 Exercise Let x = (1/n)*., €/2. Show that | x| = n/./6. What is ||,
where I, € C"*"is the identity matrix and the inner product of Exercise 1.4 is
used? (]

1.8 Theorem For any x in an inner product space V and any AeC
(i) x| =0; ||x|| =0 if and only if x =0;
(i) [lAx] = |Al]1x]-
Proof. (i1)
[Ax| = (Ax, Ax)/? = {Ad(x, x)}*/?
- 4l O
One knows that in R? (x, y) is || x| || y|| times the cosine of an angle, from

which it follows that |(x, y)| < | x| || y|. This relation continues to hold in a
general inner product space.

1.9 Theorem For x,y in an inner product space V,

[Ge, | < [Ix [ v (1.3)
with equality if and only if x and y are linearly dependent.
(1.3) is known as the Cauchy-Schwarz inequality.

Proof. Suppose first that x and.y are linearly dependent — say x = Ay where
A€C. Then both sides of (1.3) equal ||| y||?, and so (1.3) holds with
equality.

Now suppose that x and y are linearly independent: we must show that
(1.3) holds with strict inequality. For any AeC, x + Ay # 0 and therefore

0<(x+A4y,x+4y)
=(x,x+ Ay)+ (Ay,x + 4y)
= (x, x) + (x, 4y) + (Ay, x) + (y, Ay)
= |lx]|? + Ax, y) + A, y)~ + |43 y|2
= || x[|* + 2 Re{(x, )} + |4]*] yl|*.

Pick a complex number u of unit modulus such that a(x, y) = |(x, y)|. On
putting A = tu we deduce that, for any te R,

0 < [IxI* +2{Cx, y)e + [y e,



