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Foreword

Beginning in the spring of 2000, a series of four one-semester courses
were taught at Princeton University whose purpose was to present, in
an integrated manner, the core areas of analysis. The objective was to
make plain the organic unity that exists between the various parts of the
subject, and to illustrate the wide applicability of ideas of analysis to
other fields of mathematics and science. The present series of books is
an elaboration of the lectures that were given.

While there are a number of excellent texts dealing with individual
parts of what we cover, our exposition aims at a different goal: pre-
senting the various sub-areas of analysis not as separate disciplines, but
rather as highly interconnected. It is our view that seeing these relations
and their resulting synergies will motivate the reader to attain a better
understanding of the subject as a whole. With this outcome in mind, we
have concentrated on the main ideas and theorems that have shaped the
field (sometimes sacrificing a more systematic approach), and we have
been sensitive to the historical order in which the logic of the subject
developed.

We have organized our exposition into four volumes, each reflecting
the material covered in a semester. Their contents may be broadly sum-
marized as follows:

[. Fourier series and integrals.
II. Complex analysis.
I11. Measure theory, Lebesgue integration, and Hilbert spaces.

IV. A selection of further topics, including functional analysis, distri-
butions, and elements of probability theory.

However, this listing does not by itself give a complete picture of
the many interconnections that are presented, nor of the applications
to other branches that are highlighted. To give a few examples: the ele-
ments of (finite) Fourier series studied in Book I, which lead to Dirichlet
characters, and from there to the infinitude of primes in an arithmetic
progression; the X-ray and Radon transforms, which arise in a number of
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problems in Book I. and reappear in Book III to play an important role in
understanding Besicovitch-like sets in two and three dimensions; Fatou’s
theorem. which guarantees the existence of boundary values of bounded
holomorphic functions in the disc, and whose proof relies on ideas devel-
oped in each of the first three books: and the theta function, which first
occurs in Book I in the solution of the heat equation, and is then used
in Book II to find the number of ways an integer can be represented as
the sum of two or four squares, and in the analytic continuation of the
zeta function.

A few further words about the books and the courses on which they
were based. These courses where given at a rather intensive pace, with 48
lecture-hours a semester. The weekly problem sets played an indispens-
able part, and as a result exercises and problems have a similarly im-
portant role in our books. Each chapter has a series of “Exercises” that
are tied directly to the text, and while some are easy, others may require
more effort. However, the substantial number of hints that are given
should enable the reader to attack most exercises. There are also more
involved and challenging “Problems”; the ones that are most difficult, or
go beyond the scope of the text, are marked with an asterisk.

Despite the substantial connections that exist between the different
volumes, enough overlapping material has been provided so that each of
the first three books requires only minimal prerequisites: acquaintance
with elementary topics in analysis such as limits, series, differentiable
functions, and Riemann integration, together with some exposure to lin-
ear algebra. This makes these books accessible to students interested
in such diverse disciplines as mathematics, physics, engineering, and
finance, at both the undergraduate and graduate level.

It is with great pleasure that we express our appreciation to all who
have aided in this enterprise. We are particularly grateful to the stu-
dents who participated in the four courses. Their continuing interest.
enthusiasm, and dedication provided the encouragement that made this
project possible. We also wish to thank Adrian Banner and José Luis
Rodrigo for their special help in running the courses, and their efforts to
see that the students got the most from each class. In addition, Adrian
Banner also made valuable suggestions that are incorporated in the text.
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We wish also to record a note of special thanks for the following in-
dividuals: Charles Fefferman, who taught the first week (successfully
launching the whole project!); Paul Hagelstein, who in addition to read-
ing part of the manuscript taught several weeks of one of the courses.
and has since taken over the teaching of the second round of the series:
and Daniel Levine, who gave valuable help in proofreading. Last but not
least. our thanks go to Gerree Pecht, for her consummate skill in type-
setting and for the time and energy she spent in the preparation of all
aspects of the lectures. such as transparencies, notes, and the manuscript.

We are also happy to acknowledge our indebtedness for the support
we received from the 250th Anniversary Fund of Princeton University,
and the National Science Foundation’s VIGRE program.

Elias M. Stein

Rami Shakarchi

Princeton, New Jersey
August 2002

As with the previous volumes, we are happy to record our great debt
to Daniel Levine. The final version of this book has been much improved
because of his help. He read the entire manuscript with great care and
made valuable suggestions that have been incorporated in the text. We
also wish to take this opportunity to thank Hart Smith and Polam Yung
for proofreading parts of the book.

May 2011



Preface to Book IV

Functional analysis, as generally understood, brought with it a change
of focus from the study of functions on everyday geometric spaces such
as R, R9, etc., to the analysis of abstract infinite-dimensional spaces, for
example, functions spaces and Banach spaces. As such it established a
key framework for the development of modern analysis.

Our first goal in this volume is to present the basic ideas of this theory,
with particular emphasis on their connection to harmonic analysis. A
second objective is to provide an introduction to some further topics to
which any serious student of analysis ought to be exposed: probability
theory, several complex variables and oscillatory integrals. Our choice of
these subjects is guided, in the first instance, by their intrinsic interest.
Moreover, these topics complement and extend ideas in the previous
books in this series, and they serve our overarching goal of making plain
the organic unity that exists between the various parts of analysis.

Underlying this unity is the role of Fourier analysis in its interrelation
with partial differential equations, complex analysis, and number theory.
It is also exemplified by some of the specific questions that arose initially
in the previous volumes and that are taken up again here: namely, the
Dirichlet problem, ultimately treated by Brownian motion; the Radon
transform, with its connection, to Besicovitch sets; nowhere differentiable
functions; and some problems in number theory, now formulated as dis-
tributions of lattice points. We hope that this choice of material will not
only provide a broader view of analysis, but will also inspire the reader
to pursue the further study of this subject.
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