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Preface

The two authors of this book have different backgrounds within the mathe-
matical sciences. After fifteen years of collaboration, they find it benefical to
introduce their research areas jointly to students in the early stages of their
research careers. Mathematics students will learn that mathematical concepts
have an immediate impact on real life situations. Statistics students will appre-
ciate that abstract mathematical concepts are accessible, relevant and valuable.
In fact, an early draft of this book was used by one of the authors as lecture
notes to run one year-long undergraduate research seminar for a mixture of
mathematics and statistics undergraduate students in their senior years.

We hope that this book will encourage young scientists to develop an ap-
preciation of inter-disciplinary research at a time when their research career is
just beginning to emerge.

Differential geometry is a broad mathematical subject. Its global aspects are
often presented only to mathematics majors or graduate students. However, its
local aspects are the foundation of global issues and can be made accessible
to all students with rigorous, multi-variable calculus training. To study local
geometry, one studies graphs. It is a generalization of the freshman discussion
on the concavity of a real-valued function of a single variable. By studying the
geometry of graphs, one can proceed to learn global differential geometry as a
mathematician.

One may also begin to apply the geometry of a graph to analyze functions
arising from concrete problems, such as through statistics. Many statistical
analyses involve a hypothesized model. Once a model is specified, the data col-
lected are used to estimate the parameters that characterize the model. Further
inference is affected by the hypothesized model and the data collected. There-
fore, one must assess the influence based on the perturbation of various aspects
of the model inputs. Perturbations can be represented by a set of perturba-
tion parameters, and the function of these perturbation parameters becomes a
mathematical object of interest. Therefore, one can apply geometric concepts
to study this function and hence, deduce information on the perturbation.

Working through this process prompts theoretical, practical and technical
issues. In particular, we must develop measures for the influence of individual



xii Preface

perturbation parameters. We must also develop measures for the joint influence
of any two, and then any groups of perturbation parameters. From single to
multiple-parameter measures, the process is not a straightforward generaliza-
tion of lower dimensional geometric problems to higher dimensional problems,
because direct geometric generalization may not produce appropriate measures
capable of serving the purposes of a statistical analysis. Instead, it is necessary
to develop a set of meaningful measures that can constitute a well-structured
system that enables further pursuit of relationships among the measures as well
as the development of practical tools that facilitate interpretation and data
analysis. Typical examples of such practical tools include the establishment of
benchmarks for judging and interpreting measures and the search for alterna-
tive measures that reduce the computational burden. All such issues must be
addressed using geometric techniques in the light of statistical considerations.

In Part I of this book, to fix conventions we recall basics of linear algebra,
multi-variable calculus and Euclidean geometry in Chapters 1 and 2. In Chapter
3, we introduce the concept of normal sections, first fundamental forms and
second fundamental forms. In Chapter 4, we introduce normal curvature and
sectional curvatures. In Chapter 5, we study conformal transformations. This
finishes our mathematical preparation.

In Part II, we first review some elementary statistics topics. In Chapters
6 and 7, we introduce basic concepts in relation to univariate distribution for
discrete and continuous random variables, including the maximum likelihood
estimation method. After generalizing these concepts to the bivariate and mul-
tivariate distributions in Chapter 8, we introduce simple linear regression in
Chapter 9. Linear regression is the most popular statistical model, and is used
as the key example in Part III of this book. To prepare for the illustration,
some well-known topics in linear regression are discussed in Chapter 10.

In Part III, we apply the geometric concepts developed in Part I to the
statistical issues and models articulated in Part II. The goal is to develop
various measures generated by a local perturbation to assess the influence of
the perturbation of model inputs. In Chapter 11, we develop the concept of
likelihood displacement function. In Chapter 12, we apply the tools developed
in Chapters 3 and 4 to analyze the likelihood displacement function. In the
process of this development, different or mingled perspectives must be clarified.
We use the regression model with some of the most well-known perspectives
described in Chapter 10 for illustration. The relations among various measures
that are generated in the process must also be analyzed. This is done in Chapter
13. Finally, in Chapter 14, we analyze the modification of perturbations using
Chapter 5 as the theoretical foundation.

As we develop our presentation, we often encounter tedious but necessary
computations. For the sake of completeness, we have placed computations in
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the Appendices.

Graduate students in mathematics may choose to begin reading this book
starting with Part II. Likewise, graduate students in statistics may skip Part
II. However, undergraduate students from both disciplines will benefit from
reading this book in its entirety.

Yat-Sun Poon
Wai-Yin Poon
May, 2012
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Chapter 1

Preliminaries

1.1 Linear algebra

In this section, we recall several pre-requisite facts of linear algebra on R™ and
the maps between them.

1.1.1 Vectors and matrices

Here we review several linear algebra facts, to set up our conventions and
provide a quick reminder of elementary materials.

We denote the n-dimensional real vector space by R™, and treat a point in
R™ as a column vector. A vector x in R" is given in terms of its coordinates:

z1
X = 5 (1.1)
Tn

where z; € R for 1 <7 < n. Given x and y in R”, the vector addition x +y is
the vector whose j-th coordinate is z; + y; for all j from 1 to n. If X is a real
number, the scalar multiplication of A on x, denoted by Ax and x\, represents
the vector whose j-th coordinate is Az;. The vector whose coordinates are all
equal to zero is called the zero-vector and is denoted by 0.

A linear combination of a collection of vectors {vy,...,vi} in R™ is a vector
of the form Ay v; +- - -+ Ax vk for some real numbers Aj, ..., A\x. Note that there
is not any restriction on the number & relative to the dimension n.

The linear span of a collection of vectors {v1,...,vx} in R™ is the set of
all possible linear combinations for those vectors. If the linear span is equal to
R™, we say that this collection spans R™.
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A collection of vectors {v1,...,Vvg} in R™ is linearly independent if Ayvi +
-+ 4+ A\gvk = 0 implies that each ); is equal to zero. If this collection of vectors
spans R™, then it is called a basis for R™. In such a case, it is necessary that
k=n.

We use e; to denote the vector whose coordinates are all equal to zero except

that its j-th coordinate is equal to 1. This collection of vectors {ei,...,e,}
spans R™ because if x is given as (1.1), then
I 1 0
To :
x = =2 4otz |
: : 0
Tn 0 1

=x1€1 + -+ Znen.

It is also apparent that if x = 0, then each z; is equal to zero. Therefore,
{ei1,...,en} is a basis for R™. We consider this particular basis as the standard
basis for the vector space R™. The individual vectors are identified as basic
vectors.
A map A : R" — R™ is linear if
A()\lvl + A2V2) = )\1A(V1) + )\QA(VZ)
for all real numbers A1, A2, and vectors v, ve in R™. Given an m X n-matrix A,

a matrix multiplication from the left on a column vector defines a linear map.

To be precise,
ail -.- Qin 1

Ax)=| : : e (1.2)
aml --- Qmn Tn

where each entry a;; is a real number. In this case, we also use matrix multi-
plication notation Ax to represent the map A(z). This means that if

1

Ym

are the coordinates of a point y in R™, then Ax = y if and only if for all k¥ in
{1,...,m},

Yk = Zakjil'j. (13)
g=1

Because Ae; is the j-th column of the matrix A, one may re-write the
above expression for the matrix A in terms of the result of its linear action on
e;, i.e.,

A = (Aey,...,Ae,). (1.4)
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On the other hand, given the standard basis {e1,...,e,} and an arbitrary
linear map L, by taking the coordinates of L(e;) as the j-th column of a matrix
the linear map L is uniquely represented by a matrix.

The transpose of an m x n-matrix AT is an n x m-matrix obtained by
interchanging the rows with columns in A. To be precise, if A is given as in
(1.2), then

a1 --- Gm1
AT = : (1.5)
Qs » » » Dy
For example, x = (z1,...,%,)T and 0 = (0,...,0)T.

An n x n-matrix is also called a square matriz. A square matrix A is sym-
metric if A = AT. In terms of its entries, a;; = aj; for all 1 < 4,j < n. A square
matrix A is diagonal if a;; = 0 for all ¢ # j. In such case, we will also denote A
by its diagonal terms as Diag(a11, ..., ann). The square matrix Diag(1,...,1)
is also denoted by I, which is also known as the identity matriz.

Exercise 1.1.1 Suppose A is an m X n-matrix and B is an n X k-matrix,
then (AB)T = BTAT.

1.1.2 Symmetric bilinear forms

A bilinear form of the vector space R™ is a function g that associated with each
pair of vectors x and y, is real number g(x,y), which satisfies the following
properties for all real numbers A\; and A2 and all vectors x;1,X2,y1 and y2 in
Rn’

g(A1x1 + AoxX2,y) = Ai1g(x1,y) + A2g(x2,¥);

9(x, A1y1 + Aay2) = Aig(x,y1) + A29(x, y2).

A bilinear form is symmetric if g(x,y) = g(y,x) for all x and y in R"™.
Example 1.1.2 (Dot product) For all x and y in R", define
n
xy)=xTy =) z;y;. (1.6)
g=1
Then (x,y) is the usual dot product between the vectors x and y.

Example 1.1.3 (Symmetric matrices) Given an n x n-matrix A, define a
map from the product ga : R™ x R™ to R by

ga(x,y) =x"Ay. (1.7)
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The map ga is a bilinear map associated with the matrix A. If the matrix A

is symmetric,
ga(x,y) =xTAy = (xTAy)T =yTAT(x")T =yTAx = ga(y,x). (1.8)

This means that the bilinear map ga associated with the matrix A is symmet-
ric.

In particular, the dot product is the bilinear map associated with the iden-
tity matrix.

1.1.3 Vector subspaces

A subset V of R™ is a vector subspace. If for any two elements v; and vj in
V and any two real numbers A\; and Az, A;v; + A2vs is again an element in
V. Because one may choose A\; = 0 and Ay = 0, a vector subspace necessarily
contains the zero vector 0 of R™. The dimension of a vector subspace V is the
number of independent vectors needed to span V.

For example, the set

V={xeR"*:z,,, =0} (1.9)

is a vector subspace. One may consider this vector subspace as a copy of R™.
It is an n-dimensional vector subspace in R™t!.
To be precise, consider a linear map A : R® — R™*! defined by

10 ... 00
01 ... 00
A=l 3 N (1.10)
00 ... 01
00 ... 00

As the image of R™ is equal to V, as defined above, and Ax; = Ax, if and
only if x; = X2, the map A identifies R™ to the vector subspace V in both
one-to-one and onto fashions. We address the map A in (1.10) along with the
subspace V the standard embedding of R™ in R™**+1.

More generally, suppose that A : R™ — R" is a linear map. Consider the
image and kernel of A.

ImageA = {Av e R": v € R™}, kerA ={veR™: Av =0}.

This is an elementary exercise to show that ImageA is a vector subspace of R™
and kerA is a vector subspace of R™.
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The rank of an m x n-matrix A is the dimension of vector subspace ImageA
in R™.

Another kind of vector spaces often encountered can be constructed as
follows. Let n be a non-zero vector in R"*1. Define

Vi) = {veR": (v,n) =0} (1.11)

Due to the linearity of dot product, for any real numbers A; and Az and vectors
vi and va,
(A1V1 + A2V2, n) = Al <V1, n) + )\2 <V2, n).

Therefore, if vi and v, are in the set v+ (n), then A;v;+ Agva is also contained
in the set V4 (n). This shows that V1 (n) is a vector subspace of R". Because
it is the set of vectors orthogonal to the vector n, it is called the orthogonal
complement of n. The vector n is called a normal vector of the subspace V1 (n).

1.1.4 Linear maps from R" to R"

A non-zero vector x is an eigenvector of the square matrix A if and only if
there exists a real number ), such that Ax = Ax. The number ) is called an
eigenvalue of the matrix A. The set

Vi={xeR": Ax = X\x}

is called the eigenspace of the matrix A. All eigenspaces are invariant subspaces
of A, i.e., whenever visin V, Avisin V.
Not every square matrix has eigenvalus. For example, the matrix

(1 7)

is a rotation of 90° on the two-dimensional plane. It does not leave any one-
dimensional subspace invariant. However, we have the following.

Theorem 1.1.4 Suppose that A : R®™ — R" is a symmetric matriz, then
there is a basis {v1,...,vn} for R™, such that each vector v; in the basis is an
eigenvector.

A linear transformation A on R™ is invertible if there exists another linear
transformation B on R™ such that ABv = v for all v € R”. In terms of
matrices, it is equivalent to AB = I. The matrix B is called the inverse of A.
It is uniquely determined by A and is denoted by A~!. It can also be proved
that the identity AA~! =1 is equivalent to A~1A =1.



