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Summary

The basic conmcept of the present peper is
to use &e tangent line to the adiasbatic pressure-
-volume curve s an approximation to the curve
itself. First,the general characteristics of
such X fluid are shown. Then in Section Ia

R

theory is developed Which in is
similar to thet of Demtchigenko and Busemann
but is more general and can be applied to flow
with velocity approachéu' thet of sound.] The
theory is then applied to calcrlate the flow
over elliptic cylinders. In Section II the
work of ¥, Bateman is applied to this avproximated

zdiabatic fluid and two eguationg-sre—given—which
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TWO-DIMENSIONAL SUBSONIC FLOW

OF COMPRESSIBLE FLUIDS

by

Hsue-shen Tsien
California Institute of Technology

Introduction

Assuming that the pressure is a single-valued function of
density only, the equations of two-dimensional irrotational motion
of compressible fluids can be reduced to a single non-linear equation
of the velocity potential. In the supersonic case, that is, in
the case when & flow velocity is everywhere greater then that of
local sound velocity, the problem is solved by Meyer & Prandtl and
Busemenn using the method of characteristics. The essential difficulty
of this problem lies in the subsonic case, that is, in the case when
<the flow velocity is everywhere smaller then but near %e-the local
sound velocity, because then the method of characteristics cannot
be used. Glauert & Prandtl (Ref. 1) treated the case when the
disturbance to the parallel rectilinear flow due tt; 'p"rounoo of a
solid body is small, They were then able to linearize the differential

equation for the velocity potential and obtained an equation very

similar to ti®e for #He incompressible fluids. But there are usually

stagnation points either in the surface of the body or in the field
of flow, where the disturbance is no longer small., Hence, it is
doubtful whether the linear theory can be applied to the flow near a
stagnation point. On the same ground, the theory breaks down in ,ﬁé—
case of bodies whose dimension across the stream is not smell compared
with the dimension parallel to the stream.

To treat'cases Wi tHE body 1o blumb-nosed, Janzen

and Rayleigh developed the method of successive approximations. This




wia
method wes—sspieined-—pizrsiewiiy—wsd put into a more convenient form
by L. Poggi ¢B&£s—=2) and P.A. Walther (Re#=33. Recently C. Kaplan

(Ref. s) treated the case of flow over Joukowsky airfoils and elliptic

oylindersj using Poggi's method, However, the method is rather tedious

ed )
end the convergent very slow if the local velocity of sound is approached.

(Muu- Molenbroek (Rwfi—%) and Tschapligin (B=f=S) suggested
the use of the magnitude of velocity 4/ and inclination /J of

volooity% chosen axis as independent variables, and were thus able

to reduce the equation of velocity potemntial to a linear equation.
This equation was solved by Tschapligin (XIH9) emd—rarentiy—put.

into—a—mere—eonvertert TOrM by-Fr—Sivusor—and-Mr—GClanaer (Ref—T).
The solution is essentially a series each term of which is a product

’ of & hypergeometric function of 4w~ end a trigonometric function
'_'.ﬁﬁ of /5 . The main difficulty in practical application of this
_\ﬁ solution is to obtain a proper set of boundary conditions in the

2]
plane of independent variables {(u~ /d and put the solution in a

closed form.

- g,

has
Tschapligin (-a“),‘ showh that a great simplification of
the equation in the hodograph plane results if the ratio of the specific 1

heats of the gas is equal to =-1 . Since all real gases have their

ratio of specific heats between 1 and 2, the value -1 seems without i g

3 ]

st practioal signifioance. It was Demt#chenko (Ref. £#) end Busemann
céwfﬂt' :

(Ref. %) who made dlear the meaning of this specific value of -1.

#
They found that this really means to teke the tangent of,\p;/ouuro-

. .
i volume curve as an upproxlmt'.o”to the curve itself. However, they M‘,Ifo
| 2 e

1imit themselves to use the tengent at the state of »esh—of the gas

4 Thus their theory can only be applied toffla' with velocities up to ﬁ‘fﬂ"k 2“‘ % ||.'
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one half W. Recently, during a personal
discussion, Th. von KArmén suggested to the author that the theory can
be generalized -t'o use the tangent at the state ofyéa.a corresponding
to the undisturbed parallel flow. Thus the range of usefulness of

the theory can be greatly extended. This is carried out in the first

awctine

part of the present paper.\

w'ﬁhh theory, based upon
Dent’chmko and Busemann's work, is applied to the case of flow over
elliptic cylinders and the results compared with those of S,G. Hooker
(Rof.é) and C., Kaplan (Ref. #—). Furthermore, results calculated by

GlauertW-PrandtlYs linear theory are also included for comparison.

[
Recently, H. Bateman (Ref. #) demonstrated a remarkable

P 20
reciprocity ef two fields of flow of two fluids related by a certain
second Sechon
point transformation, It will be shown in wemf this
(o}
paper that the flow of incompressible fluid and the flow of compressible
tho
fluid approximated by the use of tangent to adiabatic pressure-volume
curve can be interpreted as such a point transformation. It is thus

possible to obtain a solution for compressible flow whenever a solution

of incompressible flow is kn /W
S — - —_——— \ N

aover the 10w speed\charactristics of

the flow qver are knowmm. The charac

7




incompressible flow can either be obtained by the well-known method of

with the

Aproximatn, 4o the Afiabetic Relotion it

If ﬁ is the pressure, 7 is the speeific volume and
l’ is the ratio of specific heats of a gas, the adiabatic relation
ﬁ ”‘-, = constent is a curve in the f—l/' plane as shown in

r i/
Fig. la. Te» conditions near the point / f,/ 1//' } which corresponds

< A
to tie state of flwialmst undisturbed flow can be approximated by the it
tangent to the curve at that point. The equation of the tangent at

this point can be written as)

4= 0(5-1)= C(s~s7)
o ele 5 e el /éau‘-g{&q B

v

(1)



where g is the slope of the tangent end f is the density of the
n‘ﬂ. slope c must be equal to the slope of the curve at
the point ( %,)’ﬂ; ) , therefore,

[’ { %j {d; 4v. } [ 71'4}
where 4, is the sound-velocity m the conditions .74

Thus eq. (1) can be written as'
cf e plo2 /4L
/ = ”I f
% % 1 /; s, ) (2)
M.’W %M
This is an appreximate pressure-density\toyfdiabetic) relation, and

is shown in Fig, 1 with\frue adiabetic relation.

The {Bérnoullip? theorem for compressible fluids is

Fup- F4 / %4 (3)

where 4« is the velocity of the gas and the subscripts 2 and 3
denote two different stetes of the fluid. By substituting eq. (2)
into eq. (3), the following relation iscbtained:

A l 2 z[__L_ _L/
‘ 4 -f/ Y P2
A 4 $ )’5
Nowif ;=9 , M=, 5=¢, md $2=5 ., wmw
the subseript O denotss/ the state of] rest, eoq. (4) gives:

45” $’a}
/T S 7.
A o




If the square of sound veloeity 4’,‘ is defined (as v
usuelly done) as the derivative of / with respect to f a

eq. (2) gives:

2, % . .
df—é?fz ql‘f, = constant (s)

Therefore, eq. (5) can be written as:

B o

2 (8)
SN g L5
( S 2
nMz
It is interesting to metiee that from eq. (8) the density
#ly fregbe ndicadi
|[decreases as, Velocity increases, as expected. Thus eq. (6) shows that
the local velocity of sound increases as the velocity increases, This
is just opposite to th‘“ real gas, because in the case of an adiabatic
o
flow of a real gas it is well known that the temperature of ;l
ot | eteeases
decreases as the velocity 'of gas is inoreased, emd thus the local
sound volooitz,&lno decreeses, However, in the present approximate
theory, the ratio AL or Mach's number still increases as the velocity

a
increases,as can be seen by eq. (7). But this ratio only reaches the

velue wnity when ¢=0 ,or from eq. (8) when v = o0 , It is

) thus seen that the entire regime of flow is subsonic and thus the
differential equation og:elooity potcnth.}/wo. This
is the reason why the complex representation oif‘v—docity potential and

E‘ﬁ;rm function is possible for ell cases, as will be shown in Ao
following paragraphs. However, one should realize that the portion of 7=
tengent that could be used as an approximation to the true adiabatic

relation is that portion which lies in the first quedrant., Thus the
upper linia.‘ velocity, for practical application of the theory i 0OCEHYD




when f =0 . By using egs. (17) end (18), this upper limit
is found to be

S g w148,

Since the point ( /,’fJ] lies on the brme=dtxbESic curve, the
relation q/": /;;l— ] can be used, and eq. (9) becomes:
g

)0 = 25 ) 2
“ e (?ﬂ/ 7+ / ’ Hf (10) /I wd, ot
i B

This relation is plotted in Fig. 2’ Since for most practical cases
it is not likely that the ratio ['4%’) will rise to values much

Ve QM
higher than .2 » 7 will remain positive, and this theory willvgive

If the flow is irrotational, there exists a velocity

potential ¢ such that
24 24 _
X —ltl 7 A

where §, V' are the components of 4 ht“z and /dirootion.

(11)

respectively. The equation of continuity,
5% ( }f'l ) + ?7% /—;:' d =0

will be setisfied, if the stream function 4/ is introduced such

e I S 4
f,“’l% f”‘iiré

that




Now if the angle of inclination of the velocity Y to
the Y axis u/ﬁ , egs. (11) and (12) give:

AP =w M/éhf o M/7
/f=—w?f/ué//t+ w?;f—c,/? (13)

Solving for Ay and 7 . .
by - Sfaf - At
Y- Lipdf 1 of- S d)

So long as the correspondence between the physical jumme and hodograph

(14)

plane is one to one, or mathematically ,g_%g #o , cas—cmn
Y 4
Gu he  expressed)X and gl as functions of o ./ngdn% and /

as functions of ;w’l . Thus,
/¢ - 44;”&" + ¢/l‘//‘! (15)
/% - %4&0’} ¢/7’5 il %

where primes indicate the derivative with respect to veriables

o s
indicated as subscripts. Now substitutiweq. (15) into eq. (14), ope—hes: f"' A /7

lﬂ’/—%}’!‘ﬂ; = %fﬂ;)ﬁ#/%ff,%“?é:ﬁ//j‘/ﬂ z tu it
7= /"a‘ﬁé‘f; 4l 3{3 ZJ“’ 4/%/4_%&}&/?}?%(16)

Since the left-hand side of eqgs. (lz) are exact differentials, ene=een
Ot

epply the reciprocity relationk and cbémim )

Bt a7 1) -2 (I
74, ) 2 ) an

Bt o0 -2 (YY)




the aid of eq. (7), eq. (17) gives:

: %w;rfﬁé% =-%%¢,;f ;;; Y

f (18)
Solving for ¢;|r and ¢ 7
e
W L g
Y (19)
G- g
. (19) can be further simplified by introducing a

new varieble (&  , such that

5
Then eq. (19) becomes: / /
£
. ’
¢f = ¢w

This can be easily recognized as #he Riemann: Cauchy*s differential

(21)

equetionw and thus ¢ +1/ ¢ must be an analytic function of

-t . However, for eonvenimoe of calculation, another new
set of independent variables W.w/f s
V= W&M// are introduced where ]4/-_ 2, 8‘0
Then eq. (21) can be writtem as:
a/é 9[ V) ” .
2v) T T ow

grating eq. (20),

wﬁy inte

o / . ; (23)
W- ==,

Carrying out these differentiations and simplifying with

.
[




