“HZ Books

N

ARBTF TR R BT

(%) David B. Kirk Wen-mei W. Hwu 2

Rl
% ————
2 - "
R -l'---
- -
| | o 5

SECOND EDITION S
Programming Massively
Parallel Processors

BT A AR MK

China Machine Press = SR NVIDIA

500000

AT B PR

(BE3Ch - 52K)

rogrannig adively S arattel

e _‘/}‘/’/T/,/_;/'/’,/ A Hands-on Approach {Second Edition)

SECOND EDITION

Programming Massively

(2%) David B. Kirk Wen-mei W. Hwu %

BHER&E (CIP) iE

FHES AT Ab P B IR (ESOMR - 2 B / () RIs (Kirk, D. B.), #i3C3 (Wen-mei W. Hwu)
. —dbnt: YU Tk ikt, 20133

(2 MJFRRA ED

5443 : Programming Massively Parallel Processors: A Hands-on Approach, Second Edition

ISBN 978-7-111-41629-6
LA ILOF- @ #- ILIFTRF—RFR—%3 IV.TP311.11
rb E A B 50 CIP Bdigi s (2013) 58 036145 5

WA - B
HRLG IR A EIK
Afk e Ao T REEITFF H A

ABRANEIZS . EF: 01-2013-0599

David B. Kirk, Wen-mei W. Hwu: Programming Massively Parallel Processors: A Hands-on Approach, Second
Edition (ISBN 978-0-12- 415992-1).

Copyright © 2013, 2010 David B. Kirk/NVIDIA Corporation and Wen-mei Hwu. All rights reserved.

Authorized English language reprint edition published by the Proprietor.

Copyright © 2013 by Elsevier (Singapore) Pte Ltd. All rights reserved.

Elsevier (Singapore) Pte Ltd.
3 Killiney Road

#08-01 Winsland House [
Singapore 239519

Tel: (65) 6349-0200

Fax: (65) 6733-1817

First Published 2013

Printed in China by China Machine Press under special arrangement with Elsevier (Singapore) Pte Ltd. This edition
is authorized for sale in China only, excluding Hong Kong SAR. Macau SAR and Taiwan. Unauthorized export of this
edition is a violation of the Copyright Act. Violation of this Law is subject to Civil and Criminal Penalties.

A HICZENRR H Elsevier (Singapore) Pte Ltd. AU Tlk HH AL 78 b B R BESE N SRR KA 7. AR
FRAEF ESEA (N RARRERERATEX . TR ST X R G) R AR . K2 ztin,
WAEREEARGS, B2 Z i,

APERNGA Elsevier BihAr%E, TAREE AR HE.

BUBE ol AR ALk 5 h RS 22 5 WibE4WtD 100037)
TG IRIRE

FEIR T 530 B ED R AT B 2% W) EDRY

2013 43 A5 1 RRGE 1 IRENRI

170mm X 242mm - 32.25 Elgk

trifE455: ISBN 978-7-111-41629-6

&£ Hr: 79.00 5T

A%, wAHET, IR, KA, b AL ITHER

EfRHAL: (010) 88378991 88361066 AH®E (010) 88379604
W45 (010) 68326294 88379649 68995259 #& {4 . hzjsi@hzbook.com

HhRE BIE

CEESLUARE, TR R MR RE RE B R EARBLTE, V5 E K AE B AR
B # A SRS T W %, thiE&XAEREY, EXEERBERKRISNTZE
Al AKIEH, MO, il ibrdERd, EEMLR S5EF kR A,
HREYLER R £ 2 AL R S OB EE R RT gk, Btk ™ A2 aRE%
Ve, ALEERITWFARITERE, TR THEAMIELE, BEEEANE, XaR%EME,
HME A B AR H B o’

LAE, LM BRI T, REMTFREIL™ LR RRE, X% LAABFE
KAZAEY)., X REHLEE R RIS, R, % LB R IR
Fikkg LRA¥ERE, EREGEERRENBREMIRT, ERFREERAERLT
BHRER RO ERBIREMK BRNSMEM DA FZESEEZL. BHit, st
[M T T AL E 1 3 R B RNLECE ki & R R BRI 1E A, ' 5t
B, BiEEEMHS KSR 2,

PLbk Tolk ARt Ae B A RIS IR S| “HAREABFERS ™ . B 19984F - 4h, Tl 1wk
¥ TAVEE mURAE T, BEEIMEBEM L. 2 ZFENAWME S, Ff15Pearson,
McGraw-Hill, Elsevier, MIT, John Wiley & Sons, CengageZ&i {3 £ iR A FIEST T R4
HIATERXZ, MbIELA % E FhZEobt ik 4 Andrew S. Tanenbaum, Bjarne Stroustrup,
Brain W. Kernighan, Dennis Ritchie, Jim Gray, Afred V. Aho, John E. Hopcroft, Jeffrey D.
Ullman, Abraham Silberschatz, William Stallings, Donald E. Knuth, John L. Hennessy, Larry
L. Peterson®& K ifi &4 KT —HEL 8RS, LA “THEHLEHENE" AS8FRHAR, fhigFe>], o
REEi#k. KREAOSEMEE, WEFR TXEMNSH S,

“THREHLFEFEANE” AR TERE TEANIMEETIR DR, BRNNERA R T
RS, BARE SR T BRI S A TR B ER thAH 2 e e 5
{ER E RIS, AREERAEBIPERER. €4, “HRILFEAS" LW TE
PEA R, XERREEREPROLT RV AM, T 2@ AAEXRBEH IS ZS
. HORCEIRR “28URRRBEE” 1E bk i th okl £ SCiUUE B I # R BT R

PURSHIVER . SMAIEH . —IMAVIEE . PSR, A, xR FBHER
HIEBA T RERRIE, BE LRSS HER Ll 2R 1 AT 78 38 F o slo i i &
WAL, 2E R E SN RALEM T KA B AR P A — A HIR B, AT B AR R
HBRE, MRBEHELELBNTAIX 24 BIrEEZRHB), £3FA FWODZIH LS
AR TR RIS THEE, ARG & T

H£ZM YL . www.hzbook.com

B FHR 1. hzjsj@hzbook.com
BEREBIE. (010) 88379604

BRI X TEHEREETT A4S
MBI 4ES . 100037 SFAE B dR

To Caroline, Rose, and Leo
To Sabrina, Amanda, Bryan, and Carissa
for enduring our absence while working on the course and the book

Preface

We are proud to introduce the second edition of Programming Massively Parallel
Processors: A Hands-on Approach. Mass-market computing systems that combine
multicore computer processing units (CPUs) and many-thread GPUs have brought
terascale computing to laptops and petascale computing to clusters. Armed with such
computing power, we are at the dawn of pervasive use of computational experiments
for science, engineering, health, and business disciplines. Many will be able to
achieve breakthroughs in their disciplines using computational experiments that are
of an unprecedented level of scale, accuracy, controllability, and observability. This
book provides a critical ingredient for the vision: teaching parallel programming to
millions of graduate and undergraduate students so that computational thinking and
parallel programming skills will be as pervasive as calculus.

Since the first edition came out in 2010, we have received numerous com-
ments from our readers and instructors. Many told us about the existing features
they value. Others gave us ideas about how we should expand its contents to
make the book even more valuable. Furthermore, the hardware and software tech-
nology for heterogeneous parallel computing has advanced tremendously. In the
hardware arena, two more generations of graphics processing unit (GPU) comput-
ing architectures, Fermi and Kepler, have been introduced since the first edition.
In the software domain, CUDA 4.0 and CUDA 5.0 have allowed programmers to
access the new hardware features of Fermi and Kepler. Accordingly, we added
eight new chapters and completely rewrote five existing chapters.

Broadly speaking, we aim for three major improvements in the second edition
while preserving the most valued features of the first edition. The first improve-
ment is to introduce parallel programming in a more systematic way. This is done
by (1) adding new Chapters 8, 9, and 10 that introduce frequently used, basic par-
allel algorithm patterns; (2) adding more background material to Chapters 3, 4, 5,
and 6; and (3) adding a treatment of numerical stability to Chapter 7. These addi-
tions are designed to remove the assumption that students are already familiar
with basic parallel programming concepts. They also help to address the desire
for more examples by our readers.

The second improvement is to cover practical techniques for using joint
MPI-CUDA programming in a heterogeneous computing cluster. This has been a
frequently requested addition by our readers. Due to the cost-effectiveness and
high throughput per watt of GPUs, many high-performance computing systems
now provision GPUs in each node. The new Chapter 19 explains the conceptual
framework behind the programming interfaces of these systems.

The third improvement is an introduction of new parallel programming
interfaces and tools that can significantly improve the productivity of data-parallel
programming. The new Chapters 15, 16, 17, and 18 introduce OpenACC, Thrust,

vi Preface

CUDA FORTRAN, and C+ +AMP. Instead of replicating the detailed descriptions
of these tools from their user guides, we focus on the conceptual understanding of
the programming problems that these tools are designed to solve.

While we made all these improvements, we also preserved the first edition
features that seem to contribute to its popularity. First, we kept the book as con-
cise as possible. While it is very tempting to keep adding material, we want to
minimize the number of pages readers need to go through to learn all the key con-
cepts. Second, we kept our explanations as intuitive as possible. While it is
extremely tempting to formalize some of the concepts, especially when we cover
the basic parallel algorithms, we strive to keep all our explanations intuitive and
practical.

Target Audience

The target audience of this book is graduate and undergraduate students from all
science and engineering disciplines where computational thinking and parallel
programming skills are needed to achieve breakthroughs. We assume that readers
have at least some basic C programming experience. We especially target compu-
tational scientists in fields such as mechanical engineering, civil engineering,
electrical engineering, bio-engineering, physics, chemistry, astronomy, and geog-
raphy, who use computation to further their field of research. As such, these
scientists are both experts in their domain as well as programmers. The book
takes the approach of building on basic C programming skills, to teach parallel
programming in C. We use CUDA C, a parallel programming environment that
is supported on NVIDIA GPUs and emulated on CPUs. There are more than
375 million of these processors in the hands of consumers and professionals, and
more than 120,000 programmers actively using CUDA. The applications that you
develop as part of the learning experience will be able to run by a very large user
community.

How to Use the Book

We would like to offer some of our experience in teaching courses with this
book. Since 2006, we have taught multiple types of courses: in one-semester for-
mat and in one-week intensive format. The original ECE498AL course has
become a permanent course known as ECE408 or CS483 of the University of
Illinois at Urbana-Champaign. We started to write up some early chapters of this
book when we offered ECE498AL the second time. The first four chapters were
also tested in an MIT class taught by Nicolas Pinto in the spring of 2009. Since
then, we have used the book for numerous offerings of ECE408 as well as the
VSCSE and PUMPS summer schools.

Preface vii

A Three-Phased Approach

In ECE498AL the lectures and programming assignments are balanced with each
other and organized into three phases:

Phase 1: One lecture based on Chapter 3 is dedicated to teaching the basic
CUDA memory/threading model, the CUDA extensions to the C language,
and the basic programming/debugging tools. After the lecture, students can
write a simple vector addition code in a couple of hours. This is followed by a
series of four lectures that give students the conceptual understanding of the
CUDA memory model, the CUDA thread execution model, GPU hardware
performance features, and modern computer system architecture. These
lectures are based on Chapters 4, 5, and 6.

Phase 2: A series of lectures covers floating-point considerations in parallel
computing and common data-parallel programming patterns needed to develop
a high-performance parallel application. These lectures are based on Chapters
7—10. The performance of their matrix multiplication codes increases by
about 10 times through this period. The students also complete assignments on
convolution, vector reduction, and prefix sum through this period.

Phase 3: Once the students have established solid CUDA programming skills,
the remaining lectures cover application case studies, computational thinking,
a broader range of parallel execution models, and parallel programming
principles. These lectures are based on Chapters 11—20. (The voice and video
recordings of these lectures are available online at the ECE408 web site:
http://courses.engr.illinois.edu/ece408/.

Tying It All Together: The Final Project

While the lectures, labs, and chapters of this book help lay the intellectual foun-
dation for the students, what brings the learning experience together is the final
project. The final project is so important to the full-semester course that it is
prominently positioned in the course and commands nearly two months’ focus. It
incorporates five innovative aspects: mentoring, workshop, clinic, final report,
and symposium. (While much of the information about the final project is avail-
able at the ECE408 web site, we would like to offer the thinking that was behind
the design of these aspects.)

Students are encouraged to base their final projects on problems that represent
current challenges in the research community. To seed the process, the instructors
should recruit several computational science research groups to propose problems
and serve as mentors. The mentors are asked to contribute a one- to two-page
project specification sheet that briefly describes the significance of the applica-
tion, what the mentor would like to accomplish with the student teams on the
application, the technical skills (particular type of math, physics, or chemistry
courses) required to understand and work on the application, and a list of web

viii Preface

and traditional resources that students can draw upon for technical background,
general information, and building blocks, along with specific URLs or FTP paths
to particular implementations and coding examples. These project specification
sheets also provide students with learning experiences in defining their own
research projects later in their careers. (Several examples are available at the
ECE408 course web site.)

Students are also encouraged to contact their potential mentors during their
project selection process. Once the students and the mentors agree on a project,
they enter into a close relationship, featuring frequent consultation and project
reporting. The instructors should attempt to facilitate the collaborative relation-
ship between students and their mentors, making it a very valuable experience for
both mentors and students.

Project Workshop

The main vehicle for the whole class to contribute to each other’s final project
ideas is the project workshop. We usually dedicate six of the lecture slots to project
workshops. The workshops are designed for students’ benefit. For example, if a
student has identified a project, the workshop serves as a venue to present prelimi-
nary thinking, get feedback, and recruit teammates. If a student has not identified a
project, he or she can simply attend the presentations, participate in the discussions,
and join one of the project teams. Students are not graded during the workshops, to
keep the atmosphere nonthreatening and enable them to focus on a meaningful dia-
log with the instructors, teaching assistants, and the rest of the class.

The workshop schedule is designed so the instructors and teaching assistants
can take some time to provide feedback to the project teams and so that students
can ask questions. Presentations are limited to 10 minutes so there is time for
feedback and questions during the class period. This limits the class size to about
36 presenters, assuming 90-minute lecture slots. All presentations are preloaded
into a PC to control the schedule strictly and maximize feedback time. Since not
all students present at the workshop, we have been able to accommodate up to 50
students in each class, with extra workshop time available as needed.

The instructors and teaching assistants must make a commitment to attend all
the presentations and to give useful feedback. Students typically need the most
help in answering the following questions: (1) Are the projects too big or too
small for the amount of time available? (2) Is there existing work in the field that
the project can benefit from? (3) Are the computations being targeted for parallel
execution appropriate for the CUDA programming model?

Design Document

Once the students decide on a project and form a team, they are required to sub-
mit a design document for the project. This helps them think through the project
steps before they jump into it. The ability to do such planning will be important
to their later career success. The design document should discuss the background

Preface ix

and motivation for the project, application-level objectives and potential impact,
main features of the end application, an overview of their design, an implementa-
tion plan, their performance goals, a verification plan and acceptance test, and a
project schedule.

The teaching assistants hold a project clinic for final project teams during the
week before the class symposium. This clinic helps ensure that students are on
track and that they have identified the potential roadblocks early in the process.
Student teams are asked to come to the clinic with an initial draft of the following
three versions of their application: (1) the best CPU sequential code in terms of
performance, with SSE2 and other optimizations that establish a strong serial base
of the code for their speedup comparisons and (2) the best CUDA parallel code in
terms of performance—this version is the main output of the project. This version
is used by the students to characterize the parallel algorithm overhead in terms of
extra computations involved.

Student teams are asked to be prepared to discuss the key ideas used in each
version of the code, any floating-point numerical issues, any comparison against
previous results on the application, and the potential impact on the field if they
achieve tremendous speedup. From our experience, the optimal schedule for the
clinic is one week before the class symposium. An earlier time typically results in
less mature projects and less meaningful sessions. A later time will not give stu-
dents sufficient time to revise their projects according to the feedback.

Project Report

Students are required to submit a project report on their team’s key findings. Six
lecture slots are combined into a whole-day class symposium. During the sympo-
sium, students use presentation slots proportional to the size of the teams. During
the presentation, the students highlight the best parts of their project report for the
benefit of the whole class. The presentation accounts for a significant part of stu-
dents’ grades. Each student must answer questions directed to him or her as indivi-
duals, so that different grades can be assigned to individuals in the same team. We
have recorded these presentations for viewing by future students at the ECE408
web site. The symposium is a major opportunity for students to learn to produce a
concise presentation that motivates their peers to read a full paper. After their pre-
sentation, the students also submit a full report on their final project.

Online Supplements

The lab assignments, final project guidelines, and sample project specifications
are available to instructors who use this book for their classes. While this book
provides the intellectual contents for these classes, the additional material will be
crucial in achieving the overall education goals. We would like to invite you to

X Preface

take advantage of the online material that accompanies this book, which is avail-
able at

Finally, we encourage you to submit your feedback. We would like to hear
from you if you have any ideas for improving this book. We would like to know
how we can improve the supplementary online material. Of course, we also like
to know what you liked about the book. We look forward to hearing from you.

Acknowledgements

There are so many people who have made special contributions to the second
edition. We would like to first thank the contributing authors of the new chapters.
Yuan Lin and Vinod Grover wrote the original draft of the OpenACC chapter.
Nathan Bell and Jared Hoberock wrote the original draft of the Thrust chapter,
with additional contributions on the foundational concepts from Chris Rodrigues.
Greg Ruetsch and Massimiliano Fatica wrote the original draft of the CUDA
FORTRAN chapter. David Callahan wrote the C+ +AMP Chapter. Isaac Gelado
wrote the original draft of the MPI-CUDA chapter. Brent Oster contributed to
base material and code examples of the Kepler chapter. Without the expertise and
contribution of these individuals, we would not have been able to cover these
new programming models with the level of insight that we wanted to provide to
our readers.

We would like to give special thanks to Izzat El Hajj, who tirelessly helped to
verify the code examples and improved the quality of illustrations and exercises.

We would like to especially acknowledge Ian Buck, the father of CUDA and
John Nickolls, the lead architect of Tesla GPU Computing Architecture. Their teams
laid an excellent infrastructure for this course. John passed away while we were
working on the second edition. We miss him dearly. Nadeem Mohammad organized
the NVIDIA review efforts and also contributed to Appendix B. Bill Bean, Simon
Green, Mark Harris, Nadeem Mohammad, Brent Oster, Peter Shirley, Eric Young
and Cyril Zeller provided review comments and corrections to the manuscripts.
Calisa Cole helped with cover. Nadeem’s heroic efforts have been critical to the
completion of this book.

We would like to especially thank Jensen Huang for providing a great amount
of financial and human resources for developing the course that laid the founda-
tion for this book. Tony Tamasi’s team contributed heavily to the review and
revision of the book chapters. Jensen also took the time to read the early drafts of
the chapters and gave us valuable feedback. David Luebke has facilitated the
GPU computing resources for the course. Jonah Alben has provided valuable
insight. Michael Shebanow and Michael Garland have given guest lectures and
offered materials.

John Stone and Sam Stone in Illinois contributed much of the base material for
the case study and OpenCL chapters. John Stratton and Chris Rodrigues contributed
some of the base material for the computational thinking chapter. I-Jui “Ray” Sung,
John Stratton, Xiao-Long Wu, Nady Obeid contributed to the lab material and
helped to revise the course material as they volunteered to serve as teaching assis-
tants on top of their research. Jeremy Enos worked tirelessly to ensure that students
have a stable, user-friendly GPU computing cluster to work on their lab assignments
and projects.

xii Acknowledgements

We would like to acknowledge Dick Blahut who challenged us to create the
course in Illinois. His constant reminder that we needed to write the book helped
keep us going. Beth Katsinas arranged a meeting between Dick Blahut and
NVIDIA Vice President Dan Vivoli. Through that gathering, Blahut was introduced
to David and challenged David to come to Illinois and create the course with
Wen-mei.

We would also like to thank Thom Dunning of the University of Illinois and
Sharon Glotzer of the University of Michigan, Co-Directors of the multi-university
Virtual School of Computational Science and Engineering, for graciously hosting
the summer school version of the course. Trish Barker, Scott Lathrop, Umesh
Thakkar, Tom Scavo, Andrew Schuh, and Beth McKown all helped organize the
summer school. Robert Brunner, Klaus Schulten, Pratap Vanka, Brad Sutton, John
Stone, Keith Thulborn, Michael Garland, Vlad Kindratenko, Naga Govindaraju,
Yan Xu, Arron Shinn, and Justin Haldar contributed to the lectures and panel
discussions at the summer school.

Nicolas Pinto tested the early versions of the first chapters in his MIT class
and assembled an excellent set of feedback comments and corrections. Steve
Lumetta and Sanjay Patel both taught versions of the course and gave us valuable
feedback. John Owens graciously allowed us to use some of his slides. Tor
Aamodt, Dan Connors, Tom Conte, Michael Giles, Nacho Navarro and numerous
other instructors and their students worldwide have provided us with valuable
feedback.

We would like to especially thank our colleagues Kurt Akeley, Al Aho, Arvind,
Dick Blahut, Randy Bryant, Bob Colwell, Ed Davidson, Mike Flynn, John Hennessy,
Pat Hanrahan, Nick Holonyak, Dick Karp, Kurt Keutzer, Dave Liu, Dave Kuck,
Yale Patt, David Patterson, Bob Rao, Burton Smith, Jim Smith and Mateo Valero
who have taken the time to share their insight with us over the years.

We are humbled by the generosity and enthusiasm of all the great people who
contributed to the course and the book.

David B. Kirk and Wen-mei W.Hwu

Contents

TIAEE. . o O R v
ACKNOWICAREINCAS. . .o SR xi

CHAPTER 1 Introduction ... 1

1.1 Heterogeneous Parallel Computingcccccceceriviiininienecnieinenene 2

1.2 Architecture of a Modern GPUcccoiiiiieiiininiieneesiccriceeniene 8

1.3. Why More Speed or ParalleliSm.......cccsmunmmssssomsmssssseissaisoncs 10

1.4 Speeding Up Real Applications..........cccceevuerernueeienieineesienniennens 12

1.5 Parallel Programming Languages and Models..............cccovnunnns 14

1.6 OveratChing GOAS ...voeismosssesssisesssisassimssisimsnssssmsss i msssiviasin, 16

1.7 Organization: of the: BOOK ccssssssassssissssssssssssusesssonsssissismsnassmpasssasss 17

RETELCICES ixsuvesunsivsnssssunesssnssssssrssssssmsenvs oussssdmnerssasasavonsss s esssssssnsasien 21

CHAPTER 2 History of GPU Computing ... 23

2.1 Evolution of Graphics Pipelines.........ccccccceevieiieriininnrcnieeiiinieenns 23

The Era of Fixed-Function Graphics Pipelines........c..cccccceevueene. 24

Evolution of Programmable Real-Time Graphics..........cccccocuc.... 28

Unified Graphics and Computing Processorsccceeueeruerueenne. 31

2.2, GPGPU: An INIEFMEMIALE SUED' svusnrimsssisraseiiasirismusssassmmimssiesas 33

2.3 GPU COMPULINE .«.oiussssmsmrssmsassmssssssssiosssssasimssiossessamssssmmssssmsnsss 34

Scalable (GPUS:ssmssnrmsmmmmssmmt s s s pss s s oo 35

Recent DeVEIOPIMEIS ;urssisssmamsmsisissssmsssissiammssssnssimsvussspesssissnsa 36

FOture TICNAS cicnsicisissisisinseessenssssssssssssonassnsassesssnsonsosssssasssasaasssnssase 37

References and Further Readingccoevvievieviieieiieiccieeeeceneeene 37

CHAPTER 3 Introduction to Data Parallelism and CUDAC.......... 41

3.1 Data ParalleliSmcoceevueriiiiieriieieeeieseeneeesee e s sae e enas 42

3.2 CUDA Program StrUCIUTE.........ccceererrurereessesseessresessasssaessasssasansens 43

33 A Vector Addition, Keel ..o csasessossosssismsimimmnmmmssssassiis 45

3.4 Device Global Memory and Data Transfer...........ccccceevviiinennnn. 48

3.5 Kernel Functions and Threadingcccceeveeveeiecnencenicceeenene. 53

3:6° SUIMINATY :oxciosisssarssmvssiveanisamsismsamns sossetifongassossosrassonsrnssnssonsossassass 58

Function Declarationscccoceeveereeseereesesssesseesenssuessesesnessaennes 59

Kernel LaunChiscicsissimemmsnsamsesssssassnisnassnsiorgasasssnesmasornsssasssasss 59

Predefined Variables............coccoeviiiinininincneccsecececeee e 59

Runtime APTc...ooiiiiiiiiiiececeesteee et 60

BT BXCICISEE cueiensenessorencreonuscussommnsnssssssssodysd ST Tmeis s TR ISR, 60

REfEIEIICEScococereieireiicciieeerinsreessenssssssassssssssssssnsssssasssssssesasssssssssnnns 62

Xiv Contents

CHAPTER 4 Data-Parallel Execution Model............................ 63
4.1 Cuda Thiead OfganiZation cwsssssssevmssssisssessnmsmsssssmissrmsssisupn 64
4.2 Mapping Threads to Multidimensional Data...........cccccccoerirnnnn 68
4.3 Matrix-Matrix Multiplication—A More Complex
BERENEL....... oensnses sasnse sinsin i ivs v Siesaeaas s sasossssss SoaNTasTHes s¥ RS Ua TR TR EoRs 74
4.4 Synchronization and Transparent Scalability.........ccccccoeeiiirinnnnn. 81
4.5 Assigning Resources to BIOCKSccccceiiiniiiiiiiiiiiiiiiiiiiie, 83
4.6 Querying Device Properties..........cccevuervvirniinnieeniiinineciecseeeeenns 85
4.7 Thread Scheduling and Latency Tolerance...........ccccccevuerunnunnnen. 87
4.8 SUIMIMATY ...veeveeiiieeieeeeeeeiee e ereeeete e ee s e e saeesbeeeseesbeesaeesenesnaeas 91
4.9 EXCTCISEE ussrvsvussuasssssrssinsasssssssssssssiess s6yamssyss eo5ess s ioeeio sesvsisEReus cEousnass 91
CHAPTERS CUDA MBINOTIOSc.onsmenssmmmsssssmommsessesssmsssmsesssssusssssd 95
5.1 Importance of Memory Access Efficiency.........cccceecnniiiniicnnns 96
5:2 CUDA Device Memory Typesi s asusmnssnisisissmasmmvinsis 97
5.3 A Strategy for Reducing Global Memory Traffic...................... 105
5.4 A Tiled Matrix—Matrix Multiplication Kernel.......................... 109
5.5 Memory as a Limiting Factor to Parallelismc..cccccceeurnnens 115
5.6 SUMIMATY ..ottt ettt 118
5.7 EXEICISES.c..eiiuiiutieiiiiiiieeit ettt ettt ettt 119
CHAPTER 6 Performance Considerations ..., 123
6.1 Warps and Thiead EXECUtION ...ussersssescsssossassssesssssssssssssnssnnssmmnss 124
6.2 Global Memory Bandwidthcccceviiinienniiinniienncniieeseene 132
6.3 Dynamic Partitioning of Execution Resourcesccccoeuuee.e. 141
6.4 Instruction Mix and Thread Granularityccccceeevveevieerennnnns 143
6.5 SUMIMATY ...ooiiiiiiiiiieiiee et sse e s ae e ae e seeesaaeennas 145
6.0 EXETCISES....ueiuiiuiiiiiiiieiieiiiiee ettt a et saeseeeeaeeeaeeaneas 145
REfEIENCESocviiiiiiiiiiiiiiec e 149
CHAPTER 7 Floating-Point Considerations........................cccccocoo....... 151
71 - "Floating=Point FOTINAL ..:o.sussesessasssmessissssmsssonsnessssssosssnonsnsssassos 152
Normalized Representation of M.........cccceceeerviirceecneenineennneenne. 152
EXxcess BEncoding of E .cccunassusssnnmsssnisasimsmmimsissses i 153
7.2 Representable NUMDETScccevviiiiiriienieniiiecieseeeeeeee s 155
7.3 Special Bit Patterns and Precision in IEEE Format................... 160
7.4 Arithmetic Accuracy and Rounding..........ccccoecevvuevcnnienienceenncnns 161
7.5 Algorithm Considerationsccccccrieieerienieenesiieseeseeene e 162
7.6 Numerical Stabilitycccoviiimiiiriiinireeeeeee e 164
7.7 SUMIMATY ..ottt st sae e e sneeae e 169
7.8 EXETCISES...cuieuieuiiuiruieeirieieieiireetceie ettt et sae e 170

L (31 1 611 R 171

Contents XV

CHAPTER 8 Parallel Patterns: Convolution....................ccccccoeeeee. 173

8.1 Backgrotnd ..sussammmasnisdinsmnsiiinammisim semtossasasiss 174

8.2 1D Parallel Convolution—A Basic Algorithmc........ 179

8.3 Constant Memory and Cachingccccoceeviniiininniiniieneenieenns 181

8.4 Tiled 1D Convolution with Halo Elements..........cccccccovrnennnne 185

8.5 A Simpler Tiled 1D Convolution—General Caching.............. 192

86, [SUTAMIHRY, srcvivsserenessammssscorsnsss S rres oy IER e owEEaeeg ST oasaysssa 193

BT EXCICISEE: s commsemussvsmmvassmnmsysreots 5 SRS AN T OIS S ROV oS ees 194

CHAPTER 9 Parallel Patterns: Prefix Sum............. 197

9.0 BACKEIONNG .svescmmnmamvosmssscisnbursisiirsissossesssseosisesismsssinsse 198

9.2 A Simple Paralle]l Scalic s nsmsmssmmentississsesvasvisssmsen 200

9.3 Work Efficiency Considerations............cccccoeevumirevnniirnecnucnnnns 204

9.4 A Work-Efficient Parallel Scan.......cc.ccecueviiiiniiiiiiicniiinnnn. 205

9.5 Parallel Scan for Arbitrary-Length Inputs..........ccccocvvininnnnne 210

0.0 SUMBATY «ocvuemsmsvasesssomsmssmsssssnsiaiins o issyTis v s S @ s 214

9.7 BXOTCISES, ovsosssisnissssassosmmmsimssassiisssmssioniia s stsisadositsshesssesmesspsssss 215

REFEMENCE «snsusvsmssvpanssuonssssisnsssinissnssss doasavasvasisssisississssssonssonsssinssionssmuons 216
CHAPTER 10 Parallel Patterns: Sparse Matrix—Vector

MUBIDNBAMON.............cosmmiamsinsmisssismusmommenisssmessissssiastatsesionss 217

10.1 Background ..o 218

10.2 Parallel SpPMV USING CSR.cvicvsscnssssvimosssssasssnesmissussseassossasasisnss 222,

10.3 Padding and TranSPOSItION..qususesemsenmmsassmsstssmostonssssssssonsassivie 224

104 Using Hybrid 16 Control Padding .cq: v assmrssimissmmsasenss 226

10.5 Sorting and Partitioning for Regularizationcc.cccccceunee. 230

106 SUDIMNATY isinissarsissismssssseonisrivsissommsnsssbismsarssrsssissssasonsisissasssossins 232

JO:7 B R OICISES: iiuutianenasnnsansonsonsenssmssinssassn ssssssssssssissosnssmesss sossneassssssin 233

RETOIOIIOES i 2 omssrormansmesmsonsneoreomsssmniodsosis e aras s SEEHSHo R SRR S VAT 234

CHAPTER 11 Application Case Study: Advanced MRI

RECDIBRIBNUIE: ...t asissssiasmsessns 235

11.1 Application Backgronnd «.cxessssmmmsmmmmssssmssssisessapsie 236

11.2 Iterative ReCONSIIUCHIONcccverieeiiieireeieneiesee e sieeeeeaee s 239

11.3 Computing FTDcooovviiiiceeeeeeeeeeeeeeeee e 241

Step 1: Determine the Kernel Parallelism Structure................ 243

Step 2: Getting Around the Memory Bandwidth Limitation249

Step 3: Using Hardware Trigonometry Functions 255

Step 4: Experimental Performance Tuning..........ccccccoveveennenne. 259

114 Final EVAIIAON suseimmessnississamssetontontomssommmsmsssissssesissse 260

115 EXOICISES cuistessmssmimmonsmumsmmssmusonsimsasassestesssssseaissass s menssseanionssviniss 262

RETCTENCES s issrmimivsomvisnussmaismsaiss st s vrss s woisass Srassssssssss 264

Xvi Contents

CHAPTER 12 Application Case Study: Molecular

Visualization and Analysis ... 265
12.1 Application Backgroundccceevuerniinnienneniieeeieeeee e 266
12.2 A Simple Kernel Implementation.........c..cocceeueeveeceenincncnnuennn. 268
12.3 Thread Granularity Adjustment..........c.cceererercenenenencnenenne 272
12.4 Memory CoaleSCingccoceeeieiurrieniieieeieereeseeseessesee e eneas 274
12D SUMARLY «rusosnmsissivssesmipsrrrmsmsesm s s as e s s s 277
126 BRCTCISES csunsoosvssunsossnssnsasmnsmsasnossnsasss mmsssismssosessass s oo ssasassssssmins 279
RETETENCES cxsunsussnsenencuosnussussussessaessssus counsss ssaasmssisssssnasimssmsmvaaasvarasamuuiins 279
CHAPTER 13 Parallel Programming and Computational
TRINKING ... 281
13.1 Goals of Parallel Computingccceceevevuerenienenneneneeeeeenes 282
13.2 Problem Decomposition..........cccccerireriirerereniesneesiereeeeseeeenns 283
13.3 Algorithm SeleCtionccccveueciririiireniecreneesee e 287
13:4: Computational ThINKINE ...occsssssssssesmsisnssssnasssssemssssmmsessonssassss 293
13:5 SUMMIMATY soosusosuisesoveonimsvmessisssivmsniss fommseasssm s remssems 294
13:6 EEXCTOISES ccsomvmvusnssmsssissessim mensstossness sevessamss ssasmsaiiamiossss fisitntnavanasnes 294
REACTONCES susswsinsimsmusmsssisimsicsitssiosiessitasniinsssesbassasssiniosserassnsonsonsosesnsss 295
CHAPTER 14 An Introduction to OpenCL™ ... 297
14.1 Backgroundcccccccuiiiiirierieniecieeieseieieeeeetee s sae e eae s 297
14.2 Data Parallelism Modelccccceveveriienienieiieiececieeeieenn 299
14.3: Devies ATChItEEIITE ummusasmssmmimssummmusssssmsemsissamsseorms 301
144 Kernel FUNCHoNs) msmmssssmsmsemesmssmmmimassmsimsmamsisms 303
14.5 Device Management and Kernel Launch............c.c.cocveenenene. 304
14.6 Electrostatic Potential Map in OpenCLcccccovvevinuiernnnnne. 307
14.7 SUMMATY ..ottt ettt aeeaeeanens 311
14.8 EXEICISES....iuiiiiuiiiiiiieieiiieiieie ettt ettt ssesa b saeeae et 312
REFEIEICEScvvinriiiieircie ittt et 313
CHAPTER 15 Parallel Programming with OpenACC....................... 315
15.1 OpenACC Versus CUDA Ccoovevreeeeeeeirieieceeeieie e nees 315
152 Execution MOl . umssreenmamssasmmsrmmsnssammmsmim 318
153 Memory Model . cummsmmmammmmmsms s mssiiis 319
15.4 Basic OpenACC Programisccccoeeveereerienieseesrenesinseeseeneenns 320
Parallel COnStIUCE...........coueiiieiiieienecierecete st 320
LoOP CONSLIUCT ...ttt e 322
Kernels CONSIUCE..........cceririririnrireeeeteeeee et 327
Data Managementcc.ceeeirinereneneeteeeee st see s 331
Asynchronous Computation and Data Transfer 335
15.5 Future Directions of OpenACCcccevevecinrerreveeereererennenenns 336

15.6 EXEICISES...uuiiiiiieiieiiiieeieeeeeteeeeeseeseeaeeseaeeesesaeaesessaesssneesasasnes 337

