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Preface

We are proud to introduce the second edition of Programming Massively Parallel
Processors: A Hands-on Approach. Mass-market computing systems that combine
multicore computer processing units (CPUs) and many-thread GPUs have brought
terascale computing to laptops and petascale computing to clusters. Armed with such
computing power, we are at the dawn of pervasive use of computational experiments
for science, engineering, health, and business disciplines. Many will be able to
achieve breakthroughs in their disciplines using computational experiments that are
of an unprecedented level of scale, accuracy, controllability, and observability. This
book provides a critical ingredient for the vision: teaching parallel programming to
millions of graduate and undergraduate students so that computational thinking and
parallel programming skills will be as pervasive as calculus.

Since the first edition came out in 2010, we have received numerous com-
ments from our readers and instructors. Many told us about the existing features
they value. Others gave us ideas about how we should expand its contents to
make the book even more valuable. Furthermore, the hardware and software tech-
nology for heterogeneous parallel computing has advanced tremendously. In the
hardware arena, two more generations of graphics processing unit (GPU) comput-
ing architectures, Fermi and Kepler, have been introduced since the first edition.
In the software domain, CUDA 4.0 and CUDA 5.0 have allowed programmers to
access the new hardware features of Fermi and Kepler. Accordingly, we added
eight new chapters and completely rewrote five existing chapters.

Broadly speaking, we aim for three major improvements in the second edition
while preserving the most valued features of the first edition. The first improve-
ment is to introduce parallel programming in a more systematic way. This is done
by (1) adding new Chapters 8, 9, and 10 that introduce frequently used, basic par-
allel algorithm patterns; (2) adding more background material to Chapters 3, 4, 5,
and 6; and (3) adding a treatment of numerical stability to Chapter 7. These addi-
tions are designed to remove the assumption that students are already familiar
with basic parallel programming concepts. They also help to address the desire
for more examples by our readers.

The second improvement is to cover practical techniques for using joint
MPI-CUDA programming in a heterogeneous computing cluster. This has been a
frequently requested addition by our readers. Due to the cost-effectiveness and
high throughput per watt of GPUs, many high-performance computing systems
now provision GPUs in each node. The new Chapter 19 explains the conceptual
framework behind the programming interfaces of these systems.

The third improvement is an introduction of new parallel programming
interfaces and tools that can significantly improve the productivity of data-parallel
programming. The new Chapters 15, 16, 17, and 18 introduce OpenACC, Thrust,
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CUDA FORTRAN, and C+ +AMP. Instead of replicating the detailed descriptions
of these tools from their user guides, we focus on the conceptual understanding of
the programming problems that these tools are designed to solve.

While we made all these improvements, we also preserved the first edition
features that seem to contribute to its popularity. First, we kept the book as con-
cise as possible. While it is very tempting to keep adding material, we want to
minimize the number of pages readers need to go through to learn all the key con-
cepts. Second, we kept our explanations as intuitive as possible. While it is
extremely tempting to formalize some of the concepts, especially when we cover
the basic parallel algorithms, we strive to keep all our explanations intuitive and
practical.

Target Audience

The target audience of this book is graduate and undergraduate students from all
science and engineering disciplines where computational thinking and parallel
programming skills are needed to achieve breakthroughs. We assume that readers
have at least some basic C programming experience. We especially target compu-
tational scientists in fields such as mechanical engineering, civil engineering,
electrical engineering, bio-engineering, physics, chemistry, astronomy, and geog-
raphy, who use computation to further their field of research. As such, these
scientists are both experts in their domain as well as programmers. The book
takes the approach of building on basic C programming skills, to teach parallel
programming in C. We use CUDA C, a parallel programming environment that
is supported on NVIDIA GPUs and emulated on CPUs. There are more than
375 million of these processors in the hands of consumers and professionals, and
more than 120,000 programmers actively using CUDA. The applications that you
develop as part of the learning experience will be able to run by a very large user
community.

How to Use the Book

We would like to offer some of our experience in teaching courses with this
book. Since 2006, we have taught multiple types of courses: in one-semester for-
mat and in one-week intensive format. The original ECE498AL course has
become a permanent course known as ECE408 or CS483 of the University of
Illinois at Urbana-Champaign. We started to write up some early chapters of this
book when we offered ECE498AL the second time. The first four chapters were
also tested in an MIT class taught by Nicolas Pinto in the spring of 2009. Since
then, we have used the book for numerous offerings of ECE408 as well as the
VSCSE and PUMPS summer schools.
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A Three-Phased Approach

In ECE498AL the lectures and programming assignments are balanced with each
other and organized into three phases:

Phase 1: One lecture based on Chapter 3 is dedicated to teaching the basic
CUDA memory/threading model, the CUDA extensions to the C language,
and the basic programming/debugging tools. After the lecture, students can
write a simple vector addition code in a couple of hours. This is followed by a
series of four lectures that give students the conceptual understanding of the
CUDA memory model, the CUDA thread execution model, GPU hardware
performance features, and modern computer system architecture. These
lectures are based on Chapters 4, 5, and 6.

Phase 2: A series of lectures covers floating-point considerations in parallel
computing and common data-parallel programming patterns needed to develop
a high-performance parallel application. These lectures are based on Chapters
7—10. The performance of their matrix multiplication codes increases by
about 10 times through this period. The students also complete assignments on
convolution, vector reduction, and prefix sum through this period.

Phase 3: Once the students have established solid CUDA programming skills,
the remaining lectures cover application case studies, computational thinking,
a broader range of parallel execution models, and parallel programming
principles. These lectures are based on Chapters 11—20. (The voice and video
recordings of these lectures are available online at the ECE408 web site:
http://courses.engr.illinois.edu/ece408/.

Tying It All Together: The Final Project

While the lectures, labs, and chapters of this book help lay the intellectual foun-
dation for the students, what brings the learning experience together is the final
project. The final project is so important to the full-semester course that it is
prominently positioned in the course and commands nearly two months’ focus. It
incorporates five innovative aspects: mentoring, workshop, clinic, final report,
and symposium. (While much of the information about the final project is avail-
able at the ECE408 web site, we would like to offer the thinking that was behind
the design of these aspects.)

Students are encouraged to base their final projects on problems that represent
current challenges in the research community. To seed the process, the instructors
should recruit several computational science research groups to propose problems
and serve as mentors. The mentors are asked to contribute a one- to two-page
project specification sheet that briefly describes the significance of the applica-
tion, what the mentor would like to accomplish with the student teams on the
application, the technical skills (particular type of math, physics, or chemistry
courses) required to understand and work on the application, and a list of web
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and traditional resources that students can draw upon for technical background,
general information, and building blocks, along with specific URLs or FTP paths
to particular implementations and coding examples. These project specification
sheets also provide students with learning experiences in defining their own
research projects later in their careers. (Several examples are available at the
ECE408 course web site.)

Students are also encouraged to contact their potential mentors during their
project selection process. Once the students and the mentors agree on a project,
they enter into a close relationship, featuring frequent consultation and project
reporting. The instructors should attempt to facilitate the collaborative relation-
ship between students and their mentors, making it a very valuable experience for
both mentors and students.

Project Workshop

The main vehicle for the whole class to contribute to each other’s final project
ideas is the project workshop. We usually dedicate six of the lecture slots to project
workshops. The workshops are designed for students’ benefit. For example, if a
student has identified a project, the workshop serves as a venue to present prelimi-
nary thinking, get feedback, and recruit teammates. If a student has not identified a
project, he or she can simply attend the presentations, participate in the discussions,
and join one of the project teams. Students are not graded during the workshops, to
keep the atmosphere nonthreatening and enable them to focus on a meaningful dia-
log with the instructors, teaching assistants, and the rest of the class.

The workshop schedule is designed so the instructors and teaching assistants
can take some time to provide feedback to the project teams and so that students
can ask questions. Presentations are limited to 10 minutes so there is time for
feedback and questions during the class period. This limits the class size to about
36 presenters, assuming 90-minute lecture slots. All presentations are preloaded
into a PC to control the schedule strictly and maximize feedback time. Since not
all students present at the workshop, we have been able to accommodate up to 50
students in each class, with extra workshop time available as needed.

The instructors and teaching assistants must make a commitment to attend all
the presentations and to give useful feedback. Students typically need the most
help in answering the following questions: (1) Are the projects too big or too
small for the amount of time available? (2) Is there existing work in the field that
the project can benefit from? (3) Are the computations being targeted for parallel
execution appropriate for the CUDA programming model?

Design Document

Once the students decide on a project and form a team, they are required to sub-
mit a design document for the project. This helps them think through the project
steps before they jump into it. The ability to do such planning will be important
to their later career success. The design document should discuss the background
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and motivation for the project, application-level objectives and potential impact,
main features of the end application, an overview of their design, an implementa-
tion plan, their performance goals, a verification plan and acceptance test, and a
project schedule.

The teaching assistants hold a project clinic for final project teams during the
week before the class symposium. This clinic helps ensure that students are on
track and that they have identified the potential roadblocks early in the process.
Student teams are asked to come to the clinic with an initial draft of the following
three versions of their application: (1) the best CPU sequential code in terms of
performance, with SSE2 and other optimizations that establish a strong serial base
of the code for their speedup comparisons and (2) the best CUDA parallel code in
terms of performance—this version is the main output of the project. This version
is used by the students to characterize the parallel algorithm overhead in terms of
extra computations involved.

Student teams are asked to be prepared to discuss the key ideas used in each
version of the code, any floating-point numerical issues, any comparison against
previous results on the application, and the potential impact on the field if they
achieve tremendous speedup. From our experience, the optimal schedule for the
clinic is one week before the class symposium. An earlier time typically results in
less mature projects and less meaningful sessions. A later time will not give stu-
dents sufficient time to revise their projects according to the feedback.

Project Report

Students are required to submit a project report on their team’s key findings. Six
lecture slots are combined into a whole-day class symposium. During the sympo-
sium, students use presentation slots proportional to the size of the teams. During
the presentation, the students highlight the best parts of their project report for the
benefit of the whole class. The presentation accounts for a significant part of stu-
dents’ grades. Each student must answer questions directed to him or her as indivi-
duals, so that different grades can be assigned to individuals in the same team. We
have recorded these presentations for viewing by future students at the ECE408
web site. The symposium is a major opportunity for students to learn to produce a
concise presentation that motivates their peers to read a full paper. After their pre-
sentation, the students also submit a full report on their final project.

Online Supplements

The lab assignments, final project guidelines, and sample project specifications
are available to instructors who use this book for their classes. While this book
provides the intellectual contents for these classes, the additional material will be
crucial in achieving the overall education goals. We would like to invite you to
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take advantage of the online material that accompanies this book, which is avail-
able at

Finally, we encourage you to submit your feedback. We would like to hear
from you if you have any ideas for improving this book. We would like to know
how we can improve the supplementary online material. Of course, we also like
to know what you liked about the book. We look forward to hearing from you.
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