
CAMBRIDGE TEXTS
IN APPLIED
MATHEMATICS

An Introduction to Magnetohydrodynamics

P. A. Davidson

磁动力学导论

CAMBRIDGE

· 圣界图出出版公司 www.wpcbj.com.cn

An Introduction to Magnetohydrodynamics

P. A. DAVIDSON University of Cambridge

图书在版编目 (CIP) 数据

磁动力学导论 = An Introduction to Magnetohydrodynamics:

英文/(英) 戴维森(Davidson, P. A.)著.一影印本. --北京:世界图书出版公司北京公司,2011.1

ISBN 978-7-5100-2962-2

I.①磁··· II.①戴··· III.①磁学: 动力学—教材—英文 IV.①0441.2

中国版本图书馆 CIP 数据核字 (2010) 第 212520 号

名: An Introduction to Magnetohydrodynamics

作 者: P. A. Davidson

书

中 译 名: 磁动力学导论 责任编辑: 高蓉 刘慧

出版者: 世界图书出版公司北京公司

印刷者: 三河国英印务有限公司

发 行: 世界图书出版公司北京公司(北京朝内大街137号 100010)

联系电话: 010-64021602, 010-64015659

电子信箱: kjb@ wpcbj. com. cn

开 本: 24 开

印 张: 19

版 次: 2011年01月

版权登记: 图字: 01-2010-3785

书 号: 978-7-5100-2962-2/0・856 定 价: 55.00 元

Magnetic fields influence many natural and man-made flows. They are routinely used in industry to heat, pump, stir and levitate liquid metals. There is the terrestrial magnetic field which is maintained by fluid motion in the earth's core, the solar magnetic field which generates sunspots and solar flares, and the galactic field which influences the formation of stars. This is an introductory text on magnetohydrodynamics (MHD) – the study of the interaction of magnetic fields and conducting fluids.

This book is intended to serve as an introductory text for advanced undergraduate and postgraduate students in physics, applied mathematics and engineering. The material in the text is heavily weighted towards incompressible flows and to terrestrial (as distinct from astrophysical) applications. The final sections of the text also contain an outline of the latest advances in the metallurgical applications of MHD and so are relevant to professional researchers in applied mathematics, engineering and metallurgy.

Dr. P.A. Davidson is a Reader in Fluid Mechanics at the University of Cambridge, where his current research is in fluid mechanics in process metallurgy, turbulence and stability theory. He is the author of over 50 publications, and was awarded the Institute of Materials prize in 1996 for the best paper on non-ferrous metallurgy.

An Introduction to Magnetohydrodynamics

此为试读,需要完整PDF请访问: www.ertongbook.com

Cambridge Texts in Applied Mathematics

Complex Variables: Introduction and Applications

M.J. Ablowitz and A. S. Fokas

The Space-Time Ray Method V.M. Babich, I. Molotkov and V.S. Buldyrev

Scaling, Self-Similarity and Intermediate Asymptotics *G.I. Barenblatt*

Rarefied Gas Dynamics Carlo Cercignani

High Speed Flow C.J. Chapman

Introduction to Numerical Linear Algebra and Optimisation Philippe G. Ciarlet

Applied Analysis of the Navier-Stokes Equations C.R. Doering and J.D. Gibbon

Nonlinear Systems P.G. Drazin

Solitons
P.G. Drazin and R.S. Johnson

Mathematical Models in the Applied Sciences
A. Fowler

Stability, Instability and Chaos Paul Glendinning

Perturbation Methods E.J. Hinch

Symmetry Methods for Differential Equations Peter E. Hydon

A First Course in the Numerical Analysis of Differential Equations

A. Iserles

A Modern Introduction to the Mathematical Theory of Water Waves

R.S. Johnson

The Thermomechanics of Plasticity and Fracture

Gerard A. Maugin

Viscous Flow H. Ockendon and J.R. Ockendon

Thinking About Ordinary Differential Equations R. O'Malley

The Kinematics of Mixing J.M. Ottino

Integral Equations

David Porter and David S.G. Stirling

Boundary Integral and Singularity Methods for Linearized Viscous Flow C. Pozrikidis

Maximum and Minimum Principles M.J. Sewell

An Introduction to Magnetohydrodynamics, 1st ed. (978-0-521-79487-9) by P. A. Davidson first published by Cambridge University Press 2001 All rights reserved.

This reprint edition for the People's Republic of China is published by arrangement with the Press Syndicate of the University of Cambridge, Cambridge, United Kingdom.

© Cambridge University Press & Beijing World Publishing Corporation 2010 This book is in copyright. No reproduction of any part may take place without the written permission of Cambridge University Press or Beijing World Publishing Corporation.

This edition is for sale in the mainland of China only, excluding Hong Kong SAR, Macao SAR and Taiwan, and may not be bought for export therefrom.

此版本仅限中华人民共和国境内销售,不包括香港、澳门特别行政区及 中国台湾。不得出口。

For my family

Preface

Prefaces are rarely inspiring and, one suspects, seldom read. They generally consist of a dry, factual account of the content of the book, its intended readership and the names of those who assisted in its preparation. There are, of course, exceptions, of which Den Hartog's preface to a text on mechanics is amongst the wittiest. Musing whimsically on the futility of prefaces in general, and on the inevitable demise of those who, like Heaviside, use them to settle old scores, Den Hartog's preface contains barely a single relevant fact. Only in the final paragraph does he touch on more conventional matters with the observation that he has 'placed no deliberate errors in the book, but he has lived long enough to be quite familiar with his own imperfections'.

We, for our part, shall stay with a more conventional format. This work is more of a text than a monograph. Part A (the larger part of the book) is intended to serve as an introductory text for (advanced) undergraduate and post-graduate students in physics, applied mathematics and engineering. Part B, on the other hand, is more of a research monograph and we hope that it will serve as a useful reference for professional researchers in industry and academia. We have at all times attempted to use the appropriate level of mathematics required to expose the underlying phenomena. Too much mathematics can, in our opinion, obscure the interesting physics and needlessly frighten the student. Conversely, a studious avoidance of mathematics inevitably limits the degree to which the phenomena can be adequately explained.

It is our observation that physics graduates are often well versed in the use of Maxwell's equations, but have only a passing acquaintance with fluid mechanics. Engineering graduates often have the opposite background. Consequently, we have decided to develop, more or less from first principles, those aspects of electromagnetism and fluid mechanics

which are most relevant to our subject, and which are often treated inadequately in elementary courses.

The material in the text is heavily weighted towards incompressible flows and to engineering (as distinct from astrophysical) applications. There are two reasons for this. The first is that there already exist several excellent texts on astrophysical, geophysical and plasma MHD, whereas texts oriented towards engineering applications are somewhat thinner on the ground. Second, in recent years we have witnessed a rapid growth in the application of MHD to metallurgical processes. This has spurred a great deal of fruitful research, much of which has yet to find its way into textbooks or monographs. It seems timely to summarise elements of this research. We have not tried to be exhaustive in our coverage of the metallurgical MHD, but we hope to have captured the key advances.

The author is indebted to the late D. Crighton, without whose support this text would never have seen the light of day, to H.K. Moffatt and J.C.R. Hunt for their constant advice over the years, to K. Graham for typing the manuscript, and to C. Davidson for her patience. Above all, the author would like to thank Stephen Davidson who painstakingly read each draft, querying every ambiguity and exposing the many inconsistencies in the original text.

Contents

Prefa	ice	page xvii	
Part	A: The Fundamentals of MHD	1	
Intro	duction: The Aims of Part A	1	
1	A Qualitative Overview of MHD	3	
1.1	What is MHD?	3	
1.2	A Brief History of MHD	6	
1.3	From Electrodynamics to MHD: A Simple Experiment	8	
	1.3.1 Some important parameters in electrodynamics		
	and MHD	8	
	1.3.2 A brief reminder of the laws of electrodynamics	9	
	1.3.3 A familiar high-school experiment	11	
	1.3.4 A summary of the key results for MHD	18	
1.4	Some Simple Applications of MHD	18	
2	The Governing Equations of Electrodynamics	27	
2.1	The Electric Field and the Lorentz Force	27	
2.2	Ohm's Law and the Volumetric Lorentz Force		
2.3	Ampère's Law		
2.4	Faraday's Law in Differential Form	32	
2.5	The Reduced Form of Maxwell's Equations for MHD		
2.6	A Transport Equation for B	37	
2.7	On the Remarkable Nature of Faraday and of		
	Faraday's Law	37	
	2.7.1 An historical footnote	37	
	2.7.2 An important kinematic equation	40	

x Contents

	2.7.3	The full significance of Faraday's law	42
	2.7.4	Faraday's law in ideal conductors: Alfvén's theorem	44
3	The Go	overning Equations of Fluid Mechanics	47
Part		Flow in the Absence of Lorentz Forces	47
3.1	Elemen	tary Concepts	47
	3.1.1	Different categories of fluid flow	47
	3.1.2	The Navier-Stokes equation	59
3.2	Vorticit	ty, Angular Momentum and the Biot-Savart Law	61
3.3	Advection and Diffusion of Vorticity		
	3.3.1	The vorticity equation	64
	3.3.2	Advection and diffusion of vorticity: temperature	
		as a prototype	66
	3.3.3	Vortex line stretching	70
3.4	Kelvin'	s Theorem, Helmholtz's Laws and Helicity	71
	3.4.1	Kelvin's Theorem and Helmholtz's Laws	71
	3.4.2	Helicity	74
3.5	The Pr	andtl-Batchelor Theorem	77
3.6	Bounda	ary Layers, Reynolds Stresses and Turbulence Models	81
	3.6.1	Boundary layers	81
	3.6.2	Reynolds stresses and turbulence models	83
3.7	Ekman	Pumping in Rotating Flows	90
Part	2: Incor	rporating the Lorentz Force	95
3.8	The Fu	all Equations of MHD and Key Dimensionless	
	Group	s	95
3.9	Maxwe	ell Stresses	97
4	Kinome	atics of MHD: Advection and Diffusion	
•		agnetic Field	102
4.1	The A	nalogy to Vorticity	102
4.2		on of a Magnetic Field	103
4.3		tion in Ideal Conductors: Alfvén's Theorem	104
	4.3.1	Alfvén's theorem	104
	4.3.2		106
4.4		etic Helicity	108
4.5	_	tion plus Diffusion	109
	4.5.1	Field sweeping	109
	4.5.2		110

Contents	xi

	4.5.3 4.5.4	Azimuthal field generation by differential rotation Magnetic reconnection	114 115
5	Dynami	cs at Low Magnetic Reynolds Numbers	117
5.1	The Lo	$w-R_m$ Approximation in MHD	118
Part	1: Suppr	ression of Motion	119
5.2	Magnet	ic Damping	119
	5.2.1	The destruction of mechanical energy via	
		Joule dissipation	120
	5.2.2	The damping of a two-dimensional jet	121
	5.2.3	Damping of a vortex	122
5.3	A Glim	pse at MHD Turbulence	128
5.4	Natura	l Convection in the Presence of a Magnetic Field	132
	5.4.1	Rayleigh-Bénard convection	132
	5.4.2	The governing equations	133
	5.4.3	An energy analysis of the Rayleigh-Bénard	
		instability	134
*	5.4.4	Natural convection in other configurations	137
Par	2: Gene	ration of Motion	139
5.5	Rotatir	ng Fields and Swirling Motions	139
	5.5.1	Stirring of a long column of metal	139
	5.5.2	Swirling flow induced between two parallel plates	142
5.6	Motion	Driven by Current Injection	145
	5.6.1	A model problem	145
	5.6.2	A useful energy equation	146
	5.6.3	Estimates of the induced velocity	148
	5.6.4	A paradox	149
Par	t 3: Boun	dary Layers	151
5.7	Hartm	ann Boundary Layers	151
	5.7.1	The Hartmann Layer	151
	5.7.2	Hartmann flow between two planes	152
5.8	Examp	les of Hartmann and Related Flows	154
	5.8.1	Flow-meters and MHD generators	154
	5.8.2	Pumps, propulsion and projectiles	155
5.9	Conclu	asion	157

xii Contents

6	Dynamics at Moderate to High Magnetic			
	Reynol	ds' Number	159	
6.1	Alfvén	Waves and Magnetostrophic Waves	160	
	6.1.1	Alfvén waves	160	
	6.1.2	Magnetostrophic waves	163	
6.2	Elemen	its of Geo-Dynamo Theory	166	
	6.2.1	Why do we need a dynamo theory for the earth?	166	
	6.2.2	A large magnetic Reynolds number is needed	171	
	6.2.3	An axisymmetric dynamo is not possible	174	
	6.2.4	The influence of small-scale turbulence: the α -effect	177	
	6.2.5	Some elementary dynamical considerations	185	
	6.2.6	Competing kinematic theories for the geo-dynamo	197	
6.3	A Qua	litative Discussion of Solar MHD	199	
	6.3.1	The structure of the sun	200	
	6.3.2	Is there a solar dynamo?	201	
	6.3.3	Sunspots and the solar cycle	201	
	6.3.4	The location of the solar dynamo	203	
	6.3.5	Solar flares	203	
6.4	Energy	-Based Stability Theorems for Ideal MHD	206	
	6.4.1	The need for stability theorems in ideal MHD:		
		plasma containment	207	
	6.4.2	The energy method for magnetostatic equilibria	208	
	6.4.3	An alternative method for magnetostatic equilibrium	213	
	6.4.4	Proof that the energy method provides both necessar	y	
		and sufficient conditions for stability	215	
	6.4.5	The stability of non-static equilibria	216	
6.5	Conclu	usion	220	
_				
7		Turbulence at Low and High Magnetic		
	Reyno	lds Number	222	
7.1	A Sur	vey of Conventional Turbulence	223	
	7.1.1	A historical interlude	223	
	7.1.2	A note on tensor notation	227	
	7.1.3	The structure of turbulent flows: the Kolmogorov		
		picture of turbulence	229	
	7.1.4	Velocity correlation functions and the Karman-		
		Howarth equation	235	

xiii

	7.1.5	Decaying turbulence: Kolmogorov's law,		
		Loitsyansky's integral, Landau's angular momentum		
		and Batchelor's pressure forces	240	
	7.1.6	On the difficulties of direct numerical simulations	247	
7.2	MHD	Turbulence	249	
	7.2.1	The growth of anisotropy at low and high R_m	249	
	7.2.2	Decay laws at low R_m	252	
	7.2.3	The spontaneous growth of a magnetic field at		
		high R_m	256	
7.3	Two-D	Dimensional Turbulence	260	
	7.3.1	Batchelor's self-similar spectrum and the inverse		
		energy cascade	260	
	7.3.2	Coherent vortices	263	
	7.3.3	The governing equations of two-dimensional		
		turbulence	264	
	7.3.4	Variational principles for predicting the final state		
		in confined domains	267	
Part	B: App	lications in Engineering and Metallurgy	273	
Intr	oduction	n: An Overview of Metallurgical Applications	273	
8	Magne	etic Stirring Using Rotating Fields	285	
8.1	Castin	g, Stirring and Metallurgy	285	
8.2		Models of Stirring	289	
8.3		cominance of Ekman Pumping in the Stirring	_0,	
		nfined Liquids	294	
8.4		tirring of Steel	298	
9	Magne	etic Damping Using Static Fields	301	
9.1	Metall	lurgical Applications	301	
9.2	Conse	rvation of Momentum, Destruction of Energy		
	and th	e Growth of Anisotropy	304	
9.3	Magne	Magnetic Damping of Submerged Jets		
9.4	Magne	etic Damping of Vortices	312	
	9.4.1	General considerations	312	
	9.4.2	Damping of transverse vortices	314	
	9.4.3	Damping of parallel vortices	317	
	9.4.4	Implications for low- R_m turbulence	323	
9.5	Damp	ing of Natural Convection	324	

	9.5.1	Natural convection in an aluminium ingot	324
	9.5.2	Magnetic damping in an aluminium ingot	329
10	Axisym	metric Flows Driven by the Injection	
	of Curr		332
10.1	The VA	AR Process and a Model Problem	332
	10.1.1	The VAR process	332
	10.1.2	Integral constraints on the flow	336
10.2	The Wo	ork Done by the Lorentz Force	338
10.3	Structu	re and Scaling of the Flow	340
	10.3.1	Differences between confined and unconfined flows	340
	10.3.2	Shercliff's self-similar solution for unconfined flows	342
	10.3.3	Confined flows	344
10.4	The Inf	fluence of Buoyancy	346
10.5	Stabilit	y of the Flow and the Apparent Growth of Swirl	348
	10.5.1	An extraordinary experiment	348
	10.5.2	There is no spontaneous growth of swirl!	350
10.6	Flaws i	n the Traditional Explanation for the Emergence	
	of Swir	1	351
10.7	The Ra	ble of Ekman Pumping in Establishing the Dominance	
	of Swir	1	353
	10.7.1	A glimpse at the mechanisms	353
	10.7.2	A formal analysis	356
	10.7.3	Some numerical experiments	358
11	MHD	Instabilities in Reduction Cells	363
11.1	Interfa	cial Waves in Aluminium Reduction Cells	363
	11.1.1	Early attempts to produce aluminium by electrolysis	363
	11.1.2	The instability of modern reduction cells	364
11.2	A Simp	ole Mechanical Analogue for the Instability	368
11.3	Simplif	fying Assumptions	372
11.4	1.4 A Shallow-Water Wave Equation and Key Dimensionle		
	Group	-	. 374
	11.4.1	A shallow-water wave equation	374
	11.4.2	Key dimensionless groups	378
11.5		ling Wave and Standing Wave Instabilities	379
	11.5.1	Travelling waves	379
	11.5.2		380
	11.5.3	Standing waves in rectangular domains	381