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CHAPTER ONE

Introduction

1.1. About this book

The origin of this book lies in the city of Geneva in Switzerland, so it seems
only appropriate to start there. In case you do not know Switzerland, here is
a map.

Imagine you stand at the wonderful lakefront of Geneva, with a view on
Mont Blanc, and you decide to take a run to Lake Zurich. We admit that
this is unlikely, given that the distance is 250 km. But it is just an example.
Also, imagine you could run the whole distance with a speed of 20 km per
hour which is about the speed that a world-class marathon runner could
manage (we ignore the fact that Switzerland is quite a mountainous region).
It would still take you more than 12 hours to arrive in Zurich. Now, imagine
you took a plane with an average speed of 800 km per hour. This is about
40 times faster, and you would arrive in less than half an hour. What is our
point? First, few people would run from Geneva to Zurich. But what we
wanted to give you is an idea of speedup. It is just forty in this case, not a
large number, but it makes a difference.

This book is not about traveling but about quantitative methods in a
specific field, computational finance. Quantitative analysis has become ever
more important in scientific research and the industry over the last decades,

Numerical Methods and Optimization in Finance
© 2011 Elsevier Inc. All rights reserved. 1



2 1. Introduction

and in our view, it has much changed. On the one hand, ever more data
is collected and stored today, waiting to be analyzed. At the same time,
computing power has increased dramatically. If we measure the speed of
a computer by the number of operations it can perform in a second, then
computers have improved by a factor of perhaps 1,000,000 since the early
1980s.! If traveling had matched this speedup, we could go from Geneva to
Zurich in 4100 of a second. Better yet, we do not talk about supercomputers
here but about the kind of computers we have on our desktops. (And at
least in the past, the power of what was called a supercomputer at one point
in time was available for private users only a few years later.)

Computational finance is not a well-defined discipline. It is the intersec-
tion of financial economics, scientific computing, econometrics, software
engineering, and many other fields. Its goal is to better understand prices
and markets (if you are an academic), and to make money (if you are more
practically inclined). This book is about tools for computational finance,
with an emphasis on optimization techniques. In fact, we will focus on a
particular type of optimization methods: heuristics. The theme of the book
is the practical, computational application of financial theory; we do not
deal with the theory itself; in some cases, there may not even be much estab-
lished theory. Hence, we will not develop ideas theoretically but consider
quantitative analysis as a primarily computational discipline, in which appli-
cations are put into software form and tested empirically. For every topic in
this book, we discuss the implementation of methods; algorithms will be
given in pseudocode, Matlab or R code will be provided for all important
examples.?

The readers we have in mind are students (Master or PhD level) in
programs on quantitative and computational finance, and researchers in
finance but also practitioners in banks and other financial companies. The
book could be the main reference for courses in computational finance pro-
grams or an additional reference for quantitative or mathematical finance
courses. Many of the chapters have the flavor of case studies. From a ped-
agogical view, this allows students to learn the required steps for tackling
specific problems; these steps can then be applied to other problems. From
the practical side the selected problems will, we hope, be relevant enough
to make the book a reference on how to implement a given technique.
In fact, the ideal, prototypic kind of reader that we have in mind—Ilet
us call him “the analyst”—does not only work on theory, but his job
requires a close interaction between theoretical ideas and computation
with data.

! The first IBM PC in the early 1980s did about 10 or 20 Kflops (one flop is one floating point operation
per second, see page 32). And this does not take into account improvements in algorithms.
< Matiab and R are sufficiently similar so that code from one language can be translated into the other.



1.2. Principles 3

The book is structured into three parts. The first part, “Fundamentals,”
begins with an introduction to numerical analysis, so we discuss computer
arithmetic, approximation errors, how to solve linear equations, how to
approximate derivatives, and other topics. These discussions will serve as a
reference to which later chapters often come back. For instance, the Greeks for
option pricing models can often be computed by finite differences. Numerical
methods are rarely discussed in standard finance books (Brandimarte, 2006,
is an exception), even though they are the basis for empirically applying and
testing models. Beyond the initial chapters, our book will not discuss numer-
ical methods in an abstract way. For a general treatment see, for instance,
Heath (2005) or the concise and very recommended summary given by
Trefethen (2008b); we will only discuss numerical aspects that are relevant
to our applications. Further chapters will explain deterministic numerical
methods to price instruments, namely trees and finite difference methods,
and their application to standard products.

The second part, “Simulation,” starts with chapters on how to generate
random numbers and how to model dependence. Chapter 8 discusses how
time series processes, simple assets, and portfolios can be simulated. There is
also a short example on how to implement an agent-based model. By means
of several case studies, applications will illustrate how these models can be
used for generating more realistic price processes and how simulation can
help to develop an intuitive understanding of econometric models and solve
practical problems.

The third part, “Optimization” deals with optimization problems in
finance. Many relevant optimization models cannot be solved with standard
methods that are readily available in software packages. Hence, standard
methods will only be briefly touched. We will rather show how to apply
another class of techniques, so-called heuristics. Chapter 11 will detail
building blocks of numerical optimization algorithms. Though this includes
gradient-based techniques like Newton’s method, emphasis will be put on
more robust techniques like direct search. Chapter 12, “Heuristic Methods in
a Nutshell,” will then move from these building blocks to specific techniques,
and give an overview of heuristic methods. The remaining chapters will
deal with specific problems from portfolio optimization, the estimation of
econometric models, and the calibration of option pricing models.

1.2. Principles

We start with some principles, or guidelines, for the applications in the

book.

1. We don’t know much in finance. No, we are not being modest here. “We”
does not only refer to the authors, but to finance and the people working
in finance in general (which includes us). A number of people may object



