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Preface

Graphs as a combinatoric topic was formed from Euler for a solution of
Konigsberg Seven Bridge problem dated in 1736. Maps as a mathematical
topic arose probably from the four color problem (see in Birkhoff(1913) and
Ore(1967)) and the more general map coloring problem (see in Hilbert, Cohn-
Vossen(1932), Ringel(1985) and Liu(1979)) in the mid of nineteenth century.
I could not list even main references on them because it is well known for a
large range of readers and beyond the scope of this book. Here, I only intend
to present a comprehensive theory of maps and graphs as algebraic structures
which has been developed mostly by myself only in recent few decades.

However, as described in the book Liu(2008), maps can be seen as from
polyhedra in origin to graphs in development via abstraction. This is why
algebraic graphs are much concerned with in the present stage.

In the beginning, maps in mathematics were as a topological, or
geometric object even with geographical consideration in Kempe(1879). The
first formal definition of a map was done by Heffter(1891) in the 19th century.
However, it was not paid an attention to by mathematician until 1960 when
Edmonds published a note in the AMS Notices with the dual form of Heffter’s
in Edmonds(1960) and Liu(1983).

Although this concept was widely used in literature as Liu(1979a; 1979b;
1994a; 1994b; 1995a), Ringel(1985; 1959; 1974), Stahl(2007; 1978), et al,
its disadvantage for the nonorientable case involved does not bring with
convenience for clarifying the related mathematical thinking.

Since Tutte described the nonorientability in a new way as in Tutte(1979;
1970; 1984), a number of authors begin to develop it in combinatorization of
continuous objects in Little(1988), Liu(1995b; 1999; 2001; 2002), Vince(1983;
1995), et al.

The above representations are all with complication in constructing an em-
bedding, or all distinct embeddings of a graph on a surface. However, the joint
tree model of an embedding completed in recent years and initiated from the
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early articles at the end of seventies in the last century by the present author
in Liu(1979a; 1979b) enables us to make the complication much simpler.

Because of the generality that in any asymmetric object there is some kind
of local symmetry, the concepts of graphs and maps are just put in such a rule.
In fact, the former is corresponding to that a group of two elements sticks on
an edge and the latter is that a group of four elements sticks on an edge such
that a graph without symmetry at all is in company with local symmetry.
This treatment will bring more advantages for observing the structure of a
graph. Of course, the latter is with restriction of the former because of the
latter as a permutation and the former as a partition.

The joint tree representation of an embedding of a graph on 2-dimensional
manifolds (or simply 2-manifolds), particularly surfaces (compact 2-manifolds
without boundary in our case), is described in Liu(2009) for simplifying a
number of results old and new.

This book contains the following subjects.

In Chapter 1, an abstract graph and its embedding on surfaces are much
concerned because they are motivated to building up the theory of abstract
graphs.

The second chapter is for the formal definition of abstract maps. One
can see that this matter is a natural generalization of graph embedding on
surfaces.

The third chapter is on the duality not only for maps themselves but also
for operations on maps from one surface to another. One can see how naturally
the duality is deduced from the abstract maps described in the second chapter.

The fourth chapter is on the orientability. One can see how formally the
orientability is designed as a combinatorial invariant.

The fifth chapter concentrates on the classification of orientable maps. The
sixth chapter is for the classification of nonorientable maps.

From the two chapters: Chapter 5 and Chapter 6, one can see how the
procedure is simplified for these classifications.

The seventh chapter is on the isomorphisms of maps and provides an effi-
cient algorithm for the justification and recognition of an isomorphism of two
maps, which has been shown to be useful for determining the automorphism
group of a map in the eighth chapter. Moreover, it enables us to access an
automorphism of a graph much simply.

The ninth and the tenth chapters observe the number of distinct asym-
metrized maps with the size as a parameter. In the former, only one vertex
maps are counted by favorite formulas and in the latter, general maps are
counted from differential equations. More progresses about this kind of count-
ing are referred to read the recent book: Liu(1999) and many further articles:
Baxter(2001), Bender et al(1996), Cai, Liu(2001; 1999), and Ren, Liu(2001a;



Preface v

2001b; 2000), etc.

The next chapter, Chapter 11, only presents some ideas for accessing the
symmetric census of maps and further, of graphs. This topic can be done on
the basis of the relationship between maps and embeddings.

Chapter 12 describes in brief on genus polynomial of a graph and all its
upper maps rooted and unrooted on the basis of the joint tree model. Recent
progresses on this aspect are referred to read the articles: Chen, Liu(2006;
2007), Chen, Liu, Hao(2006), Hao, Liu(2004; 2008), Huang, Liu(2000; 2002),
Li, Liu(2000), Mao, Liu(2004), Mao, Liu, Wei(2006), Wan, Liu(2005; 2006),
Zhao, Liu(2004; 2006), etc.

Chapter 13 is on the census of maps with vertex or face partitions. Al-
though such census involves with much complication and difficulty, because
of the recent progress on a basic topic about trees via an elementary method
firstly used by the author himself we are able to do a number of types of such
census in very simple way. This chapter reflects on such aspects around.

Chapter 14 is on functional equations discovered in the census of a variety
of maps on sphere and general surfaces. All of them have not yet been solved
up to now.

The three chapters, i.e., Chapter 15—Chapter 17, are with much attention
to graphs via relationship among polyhedra, embeddings and maps.

The last chapter, i.e., Chapter 18 is on surface embeddability of graphs.
Four approaches are described. More notably, one of them turns out all the
classic planarity theorems of Lefschetz (on double covering) in Lefschetz(1965),
Whitney (on duality) in Whitney(1933) and MacLane (on cycle basis) in
MacLane(1937) are much generalized and much simplified at a time.

Each chapter has a section of Notes in all of which more than 200 research
problems difficult and accessible in certain extent are mentioned with some
historical remarks.

Three appendices are complement to the context. One provides the clarifi-
cation of the concepts of polyhedra, surfaces, embeddings, and maps and their
relationship. The other two are for exhaustively calculating numerical results
and listing all rooted and unrooted maps for small graphs.

Although I have been trying to design this book self contained as much
as possible, some books such as Dixon, Mortimer(1996), Massey(1967) and
Garey, Johnson(1979) might be helpful to those not familiar with basic knowl-
edge of permutation groups, topology and computing complexity as back-
ground.

Since early nineties of the last century, a number of my former and present
graduates were or are engaged with topics related to this book. Among them,
I have to mention Dr. Y. Liu, Dr. Y. Q. Huang, Dr. J. L. Cai, Dr. D. M. Li,
Dr. H. Ren, Dr. R. X. Hao, Dr. Z. X. Li, Dr. L. F. Mao, Dr. E. L. Wei, Dr.
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W. L. He, Dr. L. X. Wan, Dr. Y. C. Chen, Dr. Y. Xu, Dr. W. Z. Liu, Dr. Z.
L. Shao, Dr. Y. Yang, Dr. G. H. Dong, Dr. J. C. Zeng, Dr. S. X. Lv, Ms. X.
M. Zhao, Mr. L. F. Li, Ms. H. Y. Wang, Ms. Z. Chai, Mr. Z. L. Zhu, et al
for their successful work on this aspect.

On this occasion, I should express my heartiest appreciation of the
financial support by KOSEF of Korea from the Com?MaC (Combinatorial
and Computational Mathematics Research Center) of the Pohang University
of Science and Technology in the summer of 2001. In that period, the intention
of this book was established. Moreover, I should be also appreciated to the
Natural Science Foundation of China for the research development reflected
in this book under its grants (60373030, 10571013 and 10871021).

Y. P. Liu
Beijing, China
May, 2012
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Chapter 1
Abstract Graphs

A graph is considered as a partition on the union of sets obtained from
each element of a given set the binary group B = {0, 1} sticks on.

e A surface, i.e., a compact 2-manifold without boundary in topology, is
seen as a polygon of even edges pairwise identified.

e An embedding of a graph on a surface is represented by a joint tree of
the graph. A joint tree of a graph consists of a plane extended tree
with labeled cotree semiedges. Two semiedges of a cotree edge have the
same label as the cotree edge with a binary index. An extended tree is
compounded of a spanning tree with cotree semiedges.

e Combinatorial properties of an embedding in abstraction are particularly
discussed for the formal definition of a map.

1.1 Graphs and Networks

Let X be a finite set. For any z € X, the binary group B = {0,1} sticks
on z to obtain Bz = {z(0),z(1)}. z(0) and z(1) are called the ends of z,
or Bz. If Bz is seen as an ordered set (z(0),z(1)), then z(0) and z(1) are,
respectively, initial and terminal ends of x. Let

X =) Bz, (1.1)
zeX

i.e., the disjoint union of all Bz (z € X). X is called the ground set.
A (directed) pregraph is a partition Par= { Py, P, ...} of the ground set X,
ie.,

X=>P. (1.2)

>3
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Bz (or (z(0),z(1))), or simply denoted by x (z € X) itself is called an (arc)
edge and P; (i > 1) a node or verte.
A (directed) pregraph is written as G = (V, E) where V =Par and

E = B(X) = {Bzlz € X}(= {((0),z(1))|z € X}).

If X is a finite set, the (directed) pregraph is called finite; otherwise, infinite.
In this book, (directed) pregraphs are all finite.

If X = (), then the (directed) pregraph is said to be empty as well.

An edge (arc) is considered to have two semiedges each of them is incident
with only one end (semiarcs with directions of one from the end and the
other to the end). An edge (arc) is with two ends identified is called a selfloop
(di-selfloop); otherwise, a link (di-link). If ¢ edges (arcs) have same ends (same
direction) are called a multiedge (multiarc), or t-edge (t-arc).

Example 1.1 There are two directed pregraphs on X = {z}, i.e.,

Par; = {{z(0)},{z(1)}}, Parz = {{z(0),z(1)}}.

They are all distinct pregraphs as well as shown in Fig. 1.1.

=

Par, Pary

Fig.1.1 Directed Pregraphs of 1 edge

Further, pregraphs of size 2 are observed.

Example 1.2 On X = {z;,x2}, the 15 directed pregraphs are as follows:

Par; = {{z1(0)}, {z1(1)}, {z2(0)}, {z2(1)}},
Pary = {{z1(0),21(1)}, {z2(0)}, {z2(1)}},
Parg = {{21(0),22(0)}, {z1(1)}, {z2(1)}},
Pary = {{21(0),z2(1)}, {z1(1)}, {z2(0)}},
Pars = {{231(0)}, {xl(l)’:E?(O)}’ {$2(1)}}’
Parg = {{z1(0)}, {z1(1),z2(1)}, {z2(0)}},
Par; = {{1"1(0)}’ {"Bl(l)}’ {.’L‘Q(l), 1172(0)}},
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Parg = {{z1(0),z1(1), z2(0)}, {z2(1)}},
Parg = {{1(0), z1(1), z2(1)}, {z2(0)}},
Parjg = {{z1(0), z2(0),z2(1)}, {z1(1)}},
Pary; = {{z1(0)}, {21(1), z2(0), z2(1)}},
Paris = {{:1,‘1 (0)’371(1)73:2(0)"7"2(1)}}7
Par;3 = {{z1(0),z1(1)}, {z2(0), z2(1)}},
Par14 = {{21(0),z2(0)}, {z1(1), z2(1)}},
Parys = {{21(0), z2(1)}, {z1(1), z2(0)}}.

Among the 15 directed pregraphs, Pars, Pary, Pars and Parg are 1 pre-
graph; Parg and Parg are 1 pregraph; Par;o and Pary; are 1 pregraph; Pary4
and Paris are 1 pregraph; and others are 5 pregraphs. Thus, there are 9
pregraphs in all (as shown in Fig. 1.2).

Now, Par= { Py, P, ...} and B are, respectively, seen as a mapping z — F;
(z € P;,i > 1) and a mapping z — Z( Z # z), {2,2} € B(X). The composition
of two mappings a and 3 on a set Z is defined to be the mapping

(aB)z = U ay (z€2). (1.3)

yEP=

Let Wip,r gy be the semigroup generated by Par=Par(X) and B = B(X).
Since the mappings a =Par and B have the property that y € az & z € ay,
it can be checked that for any z,y € B(X), what is determined by

I € Ypar, B}, 2 €Y

is an equivalence. If B(X) itself is an equivalent class, then the semigroup
¥ par, gy is called transitive on X = B(X). A (directed) pregraph with
U par, gy transitive on X is called a (directed ) graph.

A (directed) pregraph G = (V, F) that for any two vertices u,v € V, there
exists a sequence of edges ey, eg,. . ., es for the two ends of ¢; (1 = 2,3,...,5—1)
are in common with those of respective e;_; and e;+; where u and v are,
respectively, the other ends of e; and e, is called connected . Such a sequence
of edges is called a trail between u and v. A trail without edge repetition is a
walk. A walk without vertex repetition is a path. A trail, walk, or path with
u = v is, respectively, a travel, tour, or circuit.

Theorem 1.1 A (directed) pregraph is a (directed) graph if, and only
if, it is connected.

Proof Necessity. Since Par® = Par (k > 1), and B* = B (k > 1), by the
transitivity, for any two elements y,z € X, there exists v such that z € vy



