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Foreword

Beginning in the spring of 2000, a series of four one-semester courses
were taught at Princeton University whose purpose was to present, in
an integrated manner, the core areas of analysis. The objective was to
make plain the organic unity that exists between the various parts of the
subject, and to illustrate the wide applicability of ideas of analysis to
other fields of mathematics and science. The present series of books is
an elaboration of the lectures that were given.

While there are a number of excellent texts dealing with individual
parts of what we cover, our exposition aims at a different goal: pre-
senting the various sub-areas of analysis not as separate disciplines, but
rather as highly interconnected. It is our view that seeing these relations
and their resulting synergies will motivate the reader to attain a better
understanding of the subject as a whole. With this outcome in mind, we
have concentrated on the main ideas and theorems that have shaped the
field (sometimes sacrificing a more systematic approach), and we have
been sensitive to the historical order in which the logic of the subject
developed.

We have organized our exposition into four volumes, each reflecting
the material covered in a semester. Their contents may be broadly sum-
marized as follows:

I. Fourier series and integrals.
II. Complex analysis.
ITI. Measure theory, Lebesgue integration, and Hilbert spaces.

IV. A selection of further topics, including functional analysis, distri-
butions, and elements of probability theory.

However, this listing does not by itself give a complete picture of
the many interconnections that are presented, nor of the applications
to other branches that are highlighted. To give a few examples: the ele-
ments of (finite) Fourier series studied in Book I, which lead to Dirichlet
characters, and from there to the infinitude of primes in an arithmetic
progression; the X-ray and Radon transforms, which arise in a number of
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problems in Book I, and reappear in Book III to play an important role in
understanding Besicovitch-like sets in two and three dimensions; Fatou’s
theorem, which guarantees the existence of boundary values of bounded
holomorphic functions in the disc, and whose proof relies on ideas devel-
oped in each of the first three books; and the theta function, which first
occurs in Book I in the solution of the heat equation, and is then used
in Book II to find the number of ways an integer can be represented as
the sum of two or four squares, and in the analytic continuation of the
zeta function.

A few further words about the books and the courses on which they
were based. These courses where given at a rather intensive pace, with 48
lecture-hours a semester. The weekly problem sets played an indispens-
able part, and as a result exercises and problems have a similarly im-
portant role in our books. Each chapter has a series of “Exercises” that
are tied directly to the text, and while some are easy, others may require
more effort. However, the substantial number of hints that are given
should enable the reader to attack most exercises. There are also more
involved and challenging “Problems”; the ones that are most difficult, or
go beyond the scope of the text, are marked with an asterisk.

Despite the substantial connections that exist between the different
volumes, enough overlapping material has been provided so that each of
the first three books requires only minimal prerequisites: acquaintance
with elementary topics in analysis such as limits, series, differentiable
functions, and Riemann integration, together with some exposure to lin-
ear algebra. This makes these books accessible to students interested
in such diverse disciplines as mathematics, physics, engineering, and
finance, at both the undergraduate and graduate level.

It is with great pleasure that we express our appreciation to all who
have aided in this enterprise. We are particularly grateful to the stu-
dents who participated in the four courses. Their continuing interest,
enthusiasm, and dedication provided the encouragement that made this
project possible. We also wish to thank Adrian Banner and Jose Luis
Rodrigo for their special help in running the courses, and their efforts to
see that the students got the most from each class. In addition, Adrian
Banner also made valuable suggestions that are incorporated in the text.
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We wish also to record a note of special thanks for the following in-
dividuals: Charles Fefferman, who taught the first week, (successfully
launching the whole project!); Paul Hagelstein, who in addition to read-
ing part of the manuscript taught several weeks of one of the courses, and
has since taken over the teaching of the second round of the series; Daniel
Levine who gave valuable help in proof-reading. Last but not least, our
thanks go to Gerree Pecht, for her consummate skill in typesetting and
for the time and energy she spent in the preparation of all aspects of the
lectures, such as transparencies, notes, and the manuscript.

We are also happy to acknowledge our indebtedness for the support
we received from the 250th Anniversary Fund of Princeton University,
and the National Science Foundation’s VIGRE program.

Elias M. Stein
Rami Shakarchi

Princeton, New Jersey
August 2002
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Preface to Book I

Any effort to present an overall view of analysis must at its start deal
with the following questions: Where does one begin? What are the initial
subjects to be treated, and in what order are the relevant concepts and
basic techniques to be developed?

Our answers to these questions are guided by our view of the centrality
of Fourier analysis, both in the role it has played in the development of
the subject, and in the fact that its ideas permeate much of the present-
day analysis. For these reasons we have devoted this first volume to an
exposition of some basic facts about Fourier series, taken together with
a study of elements of Fourier transforms and finite Fourier analysis.
Starting this way allows one to see rather easily certain applications to
other sciences, together with the link to such topics as partial differential
equations and number theory. In later volumes several of these connec-
tions will be taken up from a more systematic point of view, and the ties
that exist with complex analysis, real analysis, Hilbert space theory, and
other areas will be explored further.

In the same spirit, we have been mindful not to overburden the begin-
ning student with some of the difficulties that are inherent in the subject:
a proper appreciation of the subtleties and technical complications that
arise can come only after one has mastered some of the initial ideas in-
volved. This point of view has led us to the following choice of material
in the present volume:

e Fourier series. At this early stage it is not appropriate to intro-
duce measure theory and Lebesgue integration. For this reason
our treatment of Fourier series in the first four chapters is carried
out in the context of Riemann integrable functions. Even with this
restriction, a substantial part of the theory can be developed, de-
tailing convergence and summability; also, a variety of connections
with other problems in mathematics can be illustrated.

e Fourier transform. For the same reasons, instead of undertaking
the theory in a general setting, we confine ourselves in Chapters 5
and 6 largely to the framework of test functions. Despite these lim-
itations, we can learn a number of basic and interesting facts about
Fourier analysis in R? and its relation to other areas, including the,
wave equation and the Radon transform.
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e Finite Fourier analysis. This is an introductory subject par excel-
lence, because limits and integrals are not explicitly present. Nev-
ertheless, the subject has several striking applications, including
the proof of the infinitude of primes in arithmetic progression.

Taking into account the introductory nature of this first volume, we
have kept the prerequisites to a minimum. Although we suppose some
acquaintance with the notion of the Riemann integral, we provide an
appendix that contains most of the results about integration needed in
the text.

We hope that this approach will facilitate the goal that we have set
for ourselves: to inspire the interested reader to learn more about this
fascinating subject, and to discover how Fourier analysis affects decisively
other parts of mathematics and science.
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1 The Genesis of Fourier
Analysis

Regarding the researches of d’ Alembert and Euler could
one not add that if they knew this expansion, they
made but a very imperfect use of it. They were both
persuaded that an arbitrary and discontinuous func-
tion could never be resolved in series of this kind, and
it does not even seem that anyone had developed a
constant in cosines of multiple arcs, the first problem
which I had to solve in the theory of heat.

J. Fourier, 1808-9

In the beginning, it was the problem of the vibrating string, and the
later investigation of heat flow, that led to the development of Fourier
analysis. The laws governing these distinct physical phenomena were
expressed by two different partial differential equations, the wave and
heat equations, and these were solved in terms of Fourier series.

Here we want to start by describing in some detail the development
of these ideas. We will do this initially in the context of the problem of
the vibrating string, and we will proceed in three steps. First, we de-
scribe several physical (empirical) concepts which motivate correspond-
ing mathematical ideas of importance for our study. These are: the role
of the functions cost, sint, and e* suggested by simple harmonic mo-
tion; the use of separation of variables, derived from the phenomenon
of standing waves; and the related concept of linearity, connected to the
superposition of tones. Next, we derive the partial differential equation
which governs the motion of the vibrating string. Finally, we will use
what we learned about the physical nature of the problem (expressed
mathematically) to solve the equation. In the last section, we use the
same approach to study the problem of heat diffusion.

Given the introductory nature of this chapter and the subject matter
covered, our presentation cannot be based on purely mathematical rea-
soning. Rather, it proceeds by plausibility arguments and aims to provide
the motivation for the further rigorous analysis in the succeeding chap-
ters. The impatient reader who wishes to begin immediately with the
theorems of the subject may prefer to pass directly to the next chapter.



