Yanzhu Liu
Liqun Chen

MRBFLESEN N F D aYiR
Chaos in Attitude
Dynamics of
Spacecraft

(B) smiexsbmt &) Springer



Yanzhu Liu
Liqun Chen

WUR A LEZS3N ) 2 v BIRT

Chaos in Attitude Dynamics of
Spacecraft

With 86 figures

@ Springer



mE® T

R BRI AEH KRB RG] B MR P AT EELGEEN. & 087
FREZTRGEYIRE, REFAMRBESZHOFTERNN A, R %L —
H NI GEE A TR R O BCFERL.  TT A B RIHRIERIRTE
P R EEMRBRESENH AR, BREAMRE, ERTEULEHRILRE.

REALERE, BRLR. BREEHREIE: 010-62782989 13701121933

&+ 7ERR YR B (CIP) ¥

F R SR A BN 775 (R = Chaos in Attitude Dynamics of Spacecraft: & 30/XIZEAE,
BB, - dbst: HHERFEHRA, 2012.10
ISBN 978-7-302-28298-3

O L.OXI- @O [NLOMKR-LEHEF-HN%¥-RAEER-FX
V.OV412.4

o [E AR 45 B B 78 CIP $dE % F(2012)58 043270 &

TIERIE: RIE
wEHK: THZE
FTENH . TR

AR 4T HERED R
B 3. http://www. tup. com. cn, http://www. wgbook. com
#oHb. EEEEREERARE AR BE 4. 100084
HEHL. 010-62770175 B M. 010-62786544
WS IEERSE: 010-62776969, c-service@ tup. tsinghua. edu. cn
B B K 1% 010-62772015, zhiliang@tup. tsinghua. edu. cn

A EBRELCERERAR

: EEFERE

; 153mm X 235mm Bl g9k 11 £ ¥.243FF

. 20124 10 A 1R Ep &:ZOIZEIOH%IZKEHEM

: 1~1000

. 98.00 Ju

HEaFEHERS
S & 5 B I

RS 023149-01



Preface

The development of spacecraft has drawn considerable attentions in the field of
dynamics since the 1950s. The spacecraft can be regarded as a particle or as a
body, depending on whether one focuses on the spacecraft’s orbital motion or on
its rotational motion about the center of mass. Spacecraft attitude dynamics deals
with the rotational motion of spacecraft. In the discussion of attitude dynamics,
the rotation of spacecraft is usually assumed not to alter the orbit, while the orbit
sometimes influences the rotational motion. Almost all spacecraft have some
attitude requirements, either explicit pointing requirements for antennas or cameras,
requirements for solar panel orientation, or simply a requirement for a given
spin-axis direction. All the requirements are implemented by the design of attitude
controls. The strategies chosen in the control process may limit the useful lifetime
of the spacecraft, since an all-thruster control system depletes its propellant
supply. Attitude dynamics forms a theoretical basis of the design and control of
spacecraft. The present monograph is concerned with spacecraft attitude motion,
although essential elements of orbital dynamics will be introduced and the effects
of orbital motion will be included in a few cases.

With the development of nonlinear dynamics, chaos in spacecraft attitude
dynamics has stirred renewed interests since the 1990s. In fact, for astronautical
investigations, the predictability of spacecraft rotations is critical, and thus chaotic
motions must be avoided. On the other hand, there are scientific experiments that
require the whole celestial sphere to be scanned, and in those cases the chaotic
rotation may be desirable. Therefore chaos theory offers a new method and
viewpoint for designing spacecraft. In addition, spacecraft attitude dynamics also
provides new mathematical models for engineering application of chaos analysis.
Although there are some excellent monographs and textbooks on spacecraft
attitude dynamics, there are few treatises on chaotic attitude motion. The present
monograph focuses on chaos in spacecraft attitude dynamics.

The monograph begins with the necessary fundamentals. Chapter 1 provides a
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primer on spacecraft dynamics, and Chapter 2 presents a survey of chaos theory.
Different chaotic attitude motions are treated in Chapters 3 and 4. Chapter 3
considers only the planar motion of spacecraft, while Chapter 4 covers the spatial
motion. The monograph ends with Chapter 5, dealing with controlling chaotic
attitude motion.

The main goal of the monograph is to provide readers with the knowledge of
theory and application of chaos and its control in spacecraft attitude dynamics,
including the basic concepts, main approaches and the latest research progress.
The material is appropriate for university teachers, scientists, engineers, and
graduate students in the fields of mechanics, applied mathematics, and aerospace
science.

Except for some background presented in Chapters 1 and 2, as well as Sections
4.1 and 5.1, all other materials contained in the monograph are adopted from
research papers of the authors and their co-workers. The research work was
financially supported by the National Natural Science Foundation of China (Project
Nos. 19782003 and 10082003), the National Outstanding Young Scientists
Foundation of China (Project No. 10725209), Shanghai Municipal Development
Foundation of Science and Technology (Project Nos. 98JC14032 and 98SHB1417),
Shanghai Municipal Education Commission Scientific Research Project (No.
2000A12), and Shanghai Leading Academic Discipline Project (No. Y0103). The
first author thanks his former PhD students Professor Peng Jianhua, Professor Chen
Liqun, Dr. Cheng Gong, and his postdoctoral fellow Professor Yu Hongjie for
their collaborations on related research. The second author thanks Professor
Liu Yanzhu, who, serving as his PhD supervisor, introduced him to this field. He
also thanks his hosts, Professor Jean W. Zu (University of Toronto) and Professor
C. W. Lim (City University of Hong Kong) for their assistance during his visit to
their institutes so that he could complete his portions of the book.

The authors thank Tsinghua University Press and Springer for the publication
of this book. They also thank Shanghai Jiao Tong University for partial financial
support of the publication.

Yanzhu Liu (Shanghai Jiao Tong University)
Liqun Chen (Shanghai University)
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Chapter 1 Primer on Spacecraft Dynamics

Abstract This chapter provides a fundamental theory of spacecraft dynamics.
After a brief survey of gravitational field, the two-body problem is summarized
as a simplified model of orbit motion of a spacecraft around the Earth. The
main environmental torques acting on spacecraft, the gravitational torque
and magnetic torque are introduced. The dynamical equations of attitude
motion of a spacecraft are established, where the Euler’s equations and
Poisson’s equations are applied for a rigid spacecraft in gravitational field.
The stability problems of the relative equilibrium of a rigid spacecraft in
circular orbit under gravitational torque are analyzed by using the first
approximation method and the Lyapunov’s direct method. The attitude motions
of a gyrostat are analyzed as a model of spacecraft with axisymmetric rotors.
The permanent rotations and its stability of a spinning spacecraft are discussed
under torque-free assumption.

Keywords orbit dynamics, two-body problem, gravitational torque, magnetic
torque, Euler’s equations, Poisson’s equations, torque-free rigid bodies,
gyrostats

This chapter presents fundamental theory of spacecraft dynamics that will be
needed in chapters 3 and 4. The chapter begins with elementary orbit dynamics,
which provides necessary background for attitude dynamics in addition to its
own merits. After a brief survey of gravitational field of a particle and a rigid
body, a satellite around the Earth is modeled as the two-body problem, and the
first integrals are derived from the dynamical equations as the energy integral, the
momentum integral, the Laplace integral and the time integral. The Keplerian orbit
is discussed with the emphasis on the elliptic motion. Then the chapter turns to
attitude dynamics by introducing main environmental torques acting on spacecraft,
the gravitational torque and the magnetic torque. Euler’s equations and Poisson’s
equations are applied to the attitude motion of spacecraft in the gravitational field.
As two significant special solutions to Euler’s equations and Poisson’s equations,
planar libration and spatial relative equilibrium are analyzed. The dynamical
equations of a gyrostat are also developed. The chapter ends with attitude motion
of torque-free rigid bodies and gyrostats. The influence of energy dissipation to
spinning spacecraft is investigated. The complete treatments of spacecraft dynamics
can be found in [1-10]. |
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1.1 Orbital Motion of Spacecraft

1.1.1 Gravitational Field of a Particle

According to Newton’s law of universal gravitation, a particle m is attracted by
another particle m, by a force

F=—G'"':’°[i] (1.1.1)
r r
where r denotes the position vector of point m with respect to point m,, m and
m, stand for the masses of corresponding points, and G = 6.67x10™" m*/kg -s? is
the universal gravitational constant (Fig. 1.1).

Define the potential function U of the gravitational field produced by the

point m, as

U=""e= (1.1.2)

where 4 =Gm, is a constant depending only on point m,. The gravitational force
F acting on point m can be written as

F=mVU (1.1.3)

where V =(d/dx)i +(d/dy)j+(3/dz)k, and i, j,k represent basis-vectors of a
reference coordinate frame (O - xyz) with point m, as the origin O. Define V
=-mU as the potential energy of point m in the gravitational field of particle m,.

m

A

me

Figure 1.1 Gravitational force of a particle

1.1.2 Gravitational Field of a Rigid Body

To discuss the gravitational field of a rigid body, the central principal axes of a
body are established as the reference coordinate frame (O, - xyz), where O, is
the mass center of a body. The position vectors of a particle m with respect

2



Chapnter 1 Primer on Spacecraft Dynamics

to the point O, and an arbitrary point P of the body are denoted as r and r’,
respectively. It follows that r'=r— p, where p is the position vector of point
P with respect to point O, (Fig. 1.2). Let ¢, (i =1,2,3) be the direct cosines of
the vector r relative to axes of (O, -xyz), and x,y,z be the coordinates of
point P in (O, - xyz). Then the vector r’ can be written as

r'=(ra,-x)i+(ro, - y)j+(ra, —2)k (1.1.4)

Figure 1.2  Gravitational force of a rigid body

The potential function U of a body is defined as
dm
U=G|||— 1.1.5
IJI — (1.L5)

where the domain of integration S is the whole body. When p <« r, substituting
Eq. (1.1.4) into Eq. (1.1.5) and considering only the second terms of p/r, one
obtains

1

2m,r

Gm

U=—°[1+

2
r

(A+B+C—3I)} (1.1.6)

where m, is the mass, and 4, B,C are the principal moments of inertia of a body
in (O, - xyz), respectively,

A= [[[07 +2)dm, B= [[[c* + ¥)dm, C = [[[* +)))dm (117
s 3 1

and [/ is defined as

I = Aa} + Bai +Ca (1.1.8)

In the case when a body is axisymmetric with respect to z-axis, let A=B
and introduce ¢ =Gm, as the gravitational parameter. Equation (1.1.6) can be
simplified as

U:ﬁ{l—c_f@ag—l)} (1.1.9)
2m.r

r

€
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For a sphere-symmetric body, 4 =C. Thus

= (1.1.10)
r
which is the same as Eq. (1.1.2). It means that the gravitational field of a
spherical body is equivalent to that of a particle, in which the whole body mass
is located in its mass center. Equation (1.1.9) or (1.1.10) can be used to express
the gravitational field of the Earth, which has the gravitational parameter
4 =398 601.19km*/s.

1.1.3 Dynamical Equations of Two-body System

Assume that the Earth may be simplified as a rigid sphere. The orbital motion of
a satellite around the Earth can be treated as the two-body problem (m,,m) with
particle m as a satellite attracted by particle m, as the Earth. Let O, denote the
mass center of this system, r, and r, denote the position vectors of m and m, with
respect to O,. Then three points m, m, and O, are collinear with the following
relationship (Fig. 1.3):

mr, +m.r, =0 (1.1.11)

Figure 1.3 Two-body system

The dynamical equations of points m and m, can be derived from Newton’s
second law as

mr,=F, mr,=-F (1.1.12)

e

where F is the gravitational force acting on point m,

F=-¢Z= L (1.1.13)
r r

Substitution of r =r, —r, into Eq. (1.1.12) leads to
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r:(1+ﬂ]n=—(1+ﬁ]rz (1.1.14)
m m

€

Thus the following equation can be derived from Eq. (1.1.12)
Kr=0

i"+—3r=
r

(1.1.15)

where u = G(m, + m), which is approximately equal to the gravitational parameter
of the Earth 2 = Gm_, and the mass center O, coincides with m, with sufficient
accuracy since m < m,. Introduce the velocity v of point m and then rewrite
the dynamical Eq. (1.1.15) as

r=0 (1.1.16a)

F=v (1.1.16b)

1.1.4 First Integrals

(1) Energy Integral
Dot-multiplying each term of Eq. (1.1.16a) by v=r, and observing that

v-v=vv, F-F=rF, One obtains

2

ATy Flg (1.1.17)
de\ 2 r

Thus the integral of energy can be derived as

—_E-F (1.1.18)

where vz/ 2 and u/r are, respectively, the kinetic energy and the potential energy
of a satellite with unit mass, and the constant E is the conserved total specific
energy.

(2) Integral of Angular Momentum

Cross-multiplying each term of Eq. (1.1.16a) with r leads to
i(r><v)—0 (1.1.19)
Py 1.

from which the integral of angular momentum is derived as
rxv=nh (1.1.20)

5
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where h is the conserved specific angular momentum of a satellite with respect
to the Earth center O,. Since the constant vector h is orthogonal to vectors r
and v, the orbital plane composed of vectors r and v has a fixed orientation in
space. In order to determine the spatial position of the orbital plane, define an
inertial reference frame (O, - X,Y,Z,) with the mass center of the Earth O, as
the origin, where Z;-axis is parallel to the polar axis of the Earth, the plane
(X,,Y,) is parallel to the equatorial plane of the Earth, and X -axis is along the
node of the ecliptic plane and the equatorial plane with direction to the first point
of Aries. A celestial sphere is fixed on (O, - X,¥,Z,) with center O, and arbitrary
radius. Within two intersection points of the node line of plane (X,,Y,) and the
orbital plane with the celestial sphere, select point N corresponding to the ascension
of a satellite as the ascending point. The angle £2 between O.N and O, X is
defined as the right ascension of the ascending node. The incline angle i of the
orbital plane with respect to the plane (X,,Y,) is defined as the inclination angle
of the orbital plane. Therefore, the orientation of the orbital plane can be determined
by two angles £2 and i (Fig. 1.4). Denote the angle between the velocity v and

Zy
‘ g

Figure 1.4 Celestial sphere and orbital plane

¥

the local horizontal plane by €. Then the area dS' swept by the position vector r
in time interval d¢ can be calculated as (Fig. 1.5)

dS=%r(vdt)cos€=%|rxv|dt=%hdt (1.1.21)

Then the magnitude of vector 4 is equal to two times the area velocity swept by
position vector 7.

h=2— (1.1.22)
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It means that the satellite moves in the orbit with a constant area velocity.

Figure 1.5 Area swept by vector r

(3) Laplace’s Integral
Cross-multiplying each term of Eq. (1.1.16a) by A, one obtains

vxh+'urxh:%(vxh—£]=0 (1.1.23)

r3 ¥

from which the Laplace’s integral is derived as follows

vxh-H - (1.1.24)
r
Since both vectors vx A and r lie in the orbital plane, the constant vector e should
be also restricted to the same plane (Fig. 1.4). The magnitude of vector e can be
determined by constants £ and 4 as

2 2

e2=iz(vxh—ﬂ] 14288 (1.1.25)
H r H

Consequently, the Laplace’s integral provides only one scalar relationship to specify

the location of vector e in the orbital plane. The angle @ between e and O,N is

selected as an independent constant, which is called the orbit angle of perigee.

Dot-multiplying r by e leads to

r-e=r-(—1—v><h—£]=p—r (1.1.26)
y7i r

where p is called the semi-parameter expressed as
h2
Y7,

Let the angle v between the position vector » and vector e be the angular

» (1.1.27)

7
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coordinate of point m in the orbital plane. v is called the true anomaly of a
satellite. Since r - e = re cosv, comparing it with Eq. (1.1.26) yields

r=—2P (1.1.28)

1+ecosv

Equation (1.1.28) determining the position of point m in the orbital plane is a conic
section with eccentricity e. Therefore, vector e is called the eccentricity vector.
The angle u between vector r and O,N is used as another angular coordinate to
specify the location of point m in the orbital plane.

u=v+w (1.1.29)
(4) Time Integral

In order to determine the relationship between the position and the time, Eq. (1.1.22)
is rewritten as

2dv _
dr

Thus the angular velocity of radius-vector r in the orbital plane can be expressed as

dv _Jup

dr r
Substitution of Eq. (1.1.28) into Eq. (1.1.31) leads to the time integral as

3
p v dv
t=t,+,|—| ———— 1.1.32
0 \}u J“’ (1+ecosv) ( )

where ¢, is the time at v =0, i.e. the time of passing the perigee.

Aforementioned first integrals contain 8 integration constants: E, h, 2, I, @, p,
e, and fy, in which only 6 constants are needed in order to determine the motion
of point m. When 6 constants are chosen, the other 2 can be calculated by
Egs. (1.1.25) and (1.1.27). The 6 independent integration constants are called
orbital elements.

h (1.1.30)

(1.1.31)

1.1.5 Characteristics of Keplerian Orbit

Establish a reference frame (O, -£7¢) in the orbital plane with O, as the origin,
0,¢ along the eccentricity vector e, and O, normal to the plane. Since r(v) =
r(-v), the orbit curve is symmetrical with respect to O,£. The intersection point
of the orbit and the vector e is called the perigee, and denoted by 7z, which has a

8
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minimum distance to point O,. The distance between m and O, is equal to the
semi-parameter p when the orbit intersects O,77 (Fig. 1.6).

W

€

/]

Figure 1.6 Keplerian orbit

According to the character of conic section, the orbit curve belongs to different
types determined by the eccentricity e: ellipse (e <1), parabola (e =1), or hyperbola
(e>1). As the hyperbolic curve is unrestricted in space, in order to ensure the
positiveness of v, the constant of the energy integral (1.1.18) should be E > 0.
On the contrary, when E <0, the range of point m is restricted by » < ,u/|E|
and corresponds to an ellipse. The parabola is a critical case when E =0. The
velocity v, of a parabolic orbit can be obtained from Eq. (1.1.18) as

v, = /2—” (1.1.33)
r

which is called the parabolic velocity or the escape velocity. Thus the following
criteria can be derived:

E<0, v<y,: ellipse
E=0, v=v,: parabola

E>0,v>%:

Establish a cylindrical coordinates frame (O, - XYZ) with radial axis O,X along
the vector r, transverse axis O,Y towards the advanced direction of motion, and
the normal axis O,Z parallel to O,¢. The true anomaly v is the angle between
two coordinate planes (X,Y) and (£,7). (O, - XYZ), rotating around O, with
angular velocity dv/dt, is called the orbital reference frame. Equations (1.1.31)
and (1.1.28) yield, respectively, the radial velocity v, and transverse velocity v,
of point m :

hyperbola



